57 research outputs found

    Gemcitabine sensitivity-related mRNA expression in endoscopic ultrasound-guided fine-needle aspiration biopsy of unresectable pancreatic cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to determine a predictive indicator of gemcitabine (GEM) efficacy in unresectable pancreatic cancer using tissue obtained by endoscopic ultrasound-guided fine-needle aspiration biopsy (EUS-FNA).</p> <p>Methods</p> <p>mRNAs extracted from 35 pancreatic tubular adenocarcinoma tissues obtained by EUS-FNA before GEM-treatment were studied. mRNAs were amplified and applied to a Focused DNA Array, which was restricted to well-known genes, including GEM sensitivity-related genes, deoxycytidine kinase (dCK), human equilibrative nucleoside transporter 1 (hENT1), hENT2, dCMP deaminase, cytidine deaminase, 5'-nucleotidase, ribonucleotide reductase 1 (RRM1) and RRM2. mRNA levels were classified into high and low expression based on a cut-off value defined as the average expression of 35 samples. These 35 patients were divided into the following two groups. Patients with partial response and those with stable disease whose tumor markers decreased by 50% or more were classified as the effective group. The rest of patients were classified as the non-effective group. The relationship between GEM efficacy and mRNA expression was then examined by chi-squared test.</p> <p>Results</p> <p>Among these GEM sensitivity-related genes, dCK alone showed a significant correlation with GEM efficacy. Eight of 12 patients in the effective group had high dCK expression, whereas 16 of 23 patients in non-effective group had low dCK expressions (<it>P </it>= 0.0398).</p> <p>Conclusion</p> <p>dCK mRNA expression is a candidate indicator for GEM efficacy in unresectable pancreatic cancer. Quantitative mRNA measurements of dCK using EUS-FNA samples are necessary for definitive conclusions.</p

    Human first-trimester chorionic villi have a myogenic potential

    Get PDF
    First-trimester chorionic-villi-derived cells (FTCVs) are the earliest fetal material that can be obtained for prenatal diagnosis of fetal disorders such as Duchenne muscular dystrophy (DMD). DMD is a devastating X-linked disorder characterized by the absence of dystrophin at the sarcolemma of muscle fibers. Currently, a limited number of treatment options are available for DMD, although cell therapy is a promising treatment strategy for muscle degeneration in DMD patients. A novel candidate source of cells for this approach is FTCVs taken between the 9th and 11th weeks of gestation. FTCVs might have a higher undifferentiated potential than any other tissue-derived cells because they are the earliest fetal material. We examined the expression of mesenchymal stem cell and pluripotent stem cell markers in FTCVs, in addition to their myogenic potential. FTCVs expressed mesenchymal stem cell markers and Nanog and Sox2 transcription factors as pluripotent stem cell markers. These cells efficiently differentiated into myotubes after myogenic induction, at which point Nanog and Sox2 were down-regulated, whereas MyoD, myogenin, desmin and dystrophin were up-regulated. To our knowledge, this is the first demonstration that FTCVs can be efficiently directed to differentiate in vitro into skeletal muscle cells that express dystrophin as the last stage marker of myogenic differentiation. The myogenic potential of FTCVs reveals their promise for use in cell therapy for DMD, for which no effective treatment presently exists

    Short Physical Performance Battery for cardiovascular disease inpatients : implications for critical factors and sarcopenia

    Get PDF
    We examined the relationship between Short Physical Performance Battery (SPPB) and clinical and laboratory factors and the effect of sarcopenia and sarcopenic obesity (SO) on clinical and laboratory factors for cardiovascular disease (CVD) inpatients. CVD male (n=318) and female (n=172) inpatients were recruited. A stepwise multiple-regression analysis was performed to predict total SPPB scores and assess clinical and laboratory factors (physical characteristics, functional and morphological assessments, etc.). Each test outcome were compared among sarcopenia, SO and non-sarcopenic groups. To predict total SPPB scores, the predicted handgrip, Controlling Nutritional Status score, % body fat, anterior mid-thigh muscle thickness, standing height and systolic blood pressure were calculated for males and anterior mid-thigh MTH, BMI, knee extension and fat mass were calculated for females. There were no differences in blood pressure, total SPPB scores and functional assessments between sarcopenia and SO groups for CVD male and female inpatients. In conclusion, the physical performance of CVD inpatients can be predicted by nutritional, functional, clinical and anthropometric variables, regardless the gender and the presence of sarcopenia. Furthermore, the presence of sarcopenia has a negative effect on the clinical and laboratory factors, but there is a difference in impact between sarcopenia and SO regardless the gender

    Blood Flow Restriction Increases the Neural Activation of the Knee Extensors During Very Low-Intensity Leg Extension Exercise in Cardiovascular Patients:A Pilot Study

    Get PDF
    Blood flow restriction (BFR) has the potential to augment muscle activation, which underlies strengthening and hypertrophic effects of exercise on skeletal muscle. We quantified the effects of BFR on muscle activation in the rectus femoris (RF), the vastus lateralis (VL), and the vastus medialis (VM) in concentric and eccentric contraction phases of low-intensity (10% and 20% of one repetition maximum) leg extension in seven cardiovascular patients who performed leg extension in four conditions: at 10% and 20% intensities with and without BFR. Each condition consisted of three sets of 30 trials with 30 s of rest between sets and 5 min of rest between conditions. Electromyographic activity (EMG) from RF, VL, and VM for 30 repetitions was divided into blocks of 10 trials and averaged for each block in each muscle. At 10% intensity, BFR increased EMG of all muscles across the three blocks in both concentric and eccentric contraction phases. At 20% intensity, EMG activity in response to BFR tended to not to increase further than what it was at 10% intensity. We concluded that very low 10% intensity exercise with BFR may maximize the benefits of BFR on muscle activation and minimize exercise burden on cardiovascular patients

    Effects of pectin liquid on gastroesophageal reflux disease in children with cerebral palsy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of thickeners is a standard therapy for decreasing episodes of regurgitation or vomiting in infants. However, it remains to be investigated whether thickener is effective for vomiting and/or chronic respiratory symptoms in children with cerebral palsy.</p> <p>Methods</p> <p>We enrolled 18 neurologically impaired children caused by cerebral palsy, with gastroesophageal reflux disease. In the first part of this study (pH monitoring), subjects were randomly allocated to two groups: fed with a high-pectin diet [enteral formula: pectin liquid = 2:1 (v/v)], or a low-pectin diet [enteral formula: pectin liquid = 3:1 (v/v)]. Two-channel esophageal pH monitoring was performed over 48 h. In the second part (clinical trial), subjects were fed a high- or low-pectin diet and non-pectin diet for 4 weeks in a crossover manner. Nurses recorded the feeding volume, number of episodes of vomiting, volume of gastric residue, episodes of cough and wheeze, frequency of using oxygen for dyspnea, and the day when the child could return to school. Cough and wheeze were recorded as a cough-score.</p> <p>Results</p> <p>The median value for the % time pH < 4 at the lower and upper esophagus was significantly decreased with a high-pectin diet [9.2% (6.2–22.6) vs. 5.0% (3.1–13.1); P < 0.01, 3.8% (2.9–11.2) vs. 1.6% (0.9–8.9); P < 0.01 (interquartile range), non-pectin and high-pectin, respectively]. The number of reflux episodes per day and duration of longest reflux were decreased significantly with a high-pectin, but not with a low-pectin diet. The median number of episodes of vomiting decreased significantly with a high-pectin diet [2.5/week (1.0–5.0) vs. 1.0 (1.0–1.5), P < 0.05]. The median cough-score was significantly decreased by both concentrations of pectin [8.5/week (1.0–11.5) vs. 2.0/week (0.0–3.0), fed with a high-pectin diet; 7.0/week (1.0–14.5) vs. 1.0/w (0.0–5.0), fed with a low-pectin diet, P < 0.05].</p> <p>Conclusion</p> <p>Pectin liquid partially decreased gastroesophageal reflux as measured by eshophageal pH monitoring, and might improve vomiting and respiratory symptoms in children with cerebral palsy.</p> <p>Trial registration</p> <p>ISRCTN19787793</p

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Freezing resistance and behavior of winter buds and canes of wine grapes cultivated in northern Japan

    Get PDF
    In high-latitude regions, the cold hardiness of buds and canes of grapevine is important for budburst time and yield in the next season. The freezing resistance of buds and canes sampled from six wine grapes currently cultivated in Hokkaido, Japan, all of them grown from autumn to winter, was investigated. A significant difference between the cultivars in their freezing resistance was detected in the buds harvested in winter. In addition, outstanding differences in the lower temperature exotherms (LTE) related to the supercooling ability of tissue cells happened in the winter buds, and there is a close relationship between freezing resistance and LTE detected in the winter buds. This suggests that the supercooling ability of tissue cells in winter buds is strongly related to the freezing resistance. However, detailed electron microscopy exposed that the differences in freezing resistance among cultivars appeared in freezing behavior of leaf primordium rather than apical meristem. This indicated that as the water mobility from the bud apical meristem to the spaces around the cane phloem progressed, the slightly dehydrated cells improved the supercooling ability and increased the freezing resistance

    A new biomarker candidate for spinal muscular atrophy: Identification of a peripheral blood cell population capable of monitoring the level of survival motor neuron protein.

    No full text
    Spinal muscular atrophy (SMA) is a severe genetic neuromuscular disorder caused by insufficiency of functional survival motor neuron (SMN) protein. Several clinical trials have been conducted with the aim of upregulating the expression of the SMN protein in SMA patients. In order to evaluate the efficiency of these SMN-targeted approaches, it has become necessary to verify SMN protein levels in the cells of SMA patients. Accordingly, we have developed a method allowing the evaluation of the functional SMN protein with < 1.5 mL of peripheral blood using imaging flow cytometry. The expression of SMN protein in CD3+, CD19+, and CD33++ cells obtained from SMA patients, was significantly reduced compared with that in cells from control subjects. In spot analysis of CD33++ cells, the intensities of SMN spots were significantly reduced in SMA subjects, when compared with that in controls. Therefore, SMN spots implied the presence of functional SMN protein in the cell nucleus. To our knowledge, our results are the first to demonstrate the presence of functional SMN protein in freshly isolated peripheral blood cells. We anticipate that SMN spot analysis will become the primary endpoint assay for the evaluation and monitoring of therapeutic intervention, with SMN serving as a reliable biomarker of therapeutic efficacy in SMA patients
    corecore