7 research outputs found

    Isolation and Characterization of a Novel Insertion Sequence Element, IS1248, in Paracoccus denitrificans

    Get PDF
    A new suicide vector, pRVS3, was constructed to facilitate gene replacements in the genome of Paracoccus denitrificans. In control experiments, incorporation of this suicide vector into the genome did not depend on the presence of homologous DNA. Using appropriate restriction enzymes, the suicide vector and flanking DNA were recovered from the genomic DNA. Sequence analysis demonstrated that both up- and downstream of the ex-integrant vector there was an element that showed high homology with bacterial insertion sequences (IS). Southern blot analysis of wild-type and integrant strains revealed that at least four copies of this IS element reside in the P. denitrificans genome, one of which, designated IS1248, had been involved in the transpositional event described here. IS1248 is 830 bp long, has 13-bp imperfect inverted repeats at the borders, and contains five open reading frames. With respect to the organization and primary sequences of the open reading frames, IS1248 closely resembles IS869 and IS427 of Agrobacterium tumefaciens, IS402 of Pseudomonas cepacia, and ISmyco found in Mycobacterium tuberculosis.

    The terminal oxidases of Paracoccus denitrificans

    Get PDF
    Three distinct types of terminal oxidases participate in the aerobic respiratory pathways of Paracoccus denitrificans. Two alternative genes encoding subunit I of the aa3-type cytochrome c oxidase have been isolated before, namely ctaDI and ctaDII. Each of these genes can be expressed separately to complement a double mutant (ΔctaDI, ΔctaDII), indicating that they are isoforms of subunit I of the aa3-type oxidase. The genomic locus of a quinol oxidase has been isolated: cyoABC. This protohaem-containing oxidase, called cytochrome bb3, is the only quinol oxidase expressed under the conditions used. In a triple oxidase mutant (ΔctaDI, ΔctaDII, cyoB::KmR) an alternative cytochrome c oxidase has been characterized; this cbb3-type oxidase has been partially purified. Both cytochrome aa3 and cytochrome bb3 are redox-driven proton pumps. The proton-pumping capacity of cytochrome cbb3 has been analysed; arguments for and against the active transport of protons by this novel oxidase complex are discussed.

    Structural and functional analysis of aa3-type and cbb3-type cytochrome c oxidases of Paracoccus denitrificans reveals significant differences in proton-pump design

    Get PDF
    In Paracoccus denitrificans the aa3-type cytochrome c oxidase and the bb3-type quinol oxidase have previously been characterized in detail, both biochemically and genetically. Here we report on the isolation of a genomic locus that harbours the gene cluster ccoNOQP, and demonstrate that it encodes an alternative cbb3-type cytochrome c oxidase. This oxidase has previously been shown to be specifically induced at low oxygen tensions, suggesting that its expression is controlled by an oxygen-sensing mechanism. This view is corroborated by the observation that the ccoNOQP gene cluster is preceded by a gene that encodes an FNR homologue and that its promoter region contains an FNR-binding motif. Biochemical and physiological analyses of a set of oxidase mutants revealed that, at least under the conditions tested, cytochromes aa3, bb3 and cbb3 make up the complete set of terminal oxidases in P. denitrificans. Proton-translocation measurements of these oxidase mutants indicate that all three oxidase types have the capacity to pump protons. Previously, however, we have reported decreased H+/e- coupling efficiencies of the cbb3-type oxidase under certain conditions. Sequence alignment suggests that many residues that have been proposed to constitute the chemical and pumped proton channels in cytochrome aa3 (and probably also in cytochrome bb3) are not conserved in cytochrome cbb3. It is concluded that the design of the proton pump in cytochrome cbb3 differs significantly from that in the other oxidase types.

    Mutagenesis of the gene encoding amicyanin of Paracoccus denitrificans and the resultant effect on methylamine oxidation

    Get PDF
    AbstractThe gene encoding the blue-copper protein amicyanin was isolated from a genomic bank of Pracoccus denitrificans by using a synthetic oligonucleotide. It is located directly downstream of the gene encoding the small subunit of methylmine dehydrogenase. Amicyanin is transcribed as a presursor protein with a signal sequence, typical for periplasmic proteins. Specific inactivation of amicyanin by means of gene replacement techniques resulted in the complete loss of the ability to grow on methylamine
    corecore