639 research outputs found
Modeling Klein tunneling and caustics of electron waves in graphene
We employ the tight-binding propagation method to study Klein tunneling and
quantum interference in large graphene systems. With this efficient numerical
scheme, we model the propagation of a wave packet through a potential barrier
and determine the tunneling probability for different incidence angles. We
consider both sharp and smooth potential barriers in n-p-n and n-n' junctions
and find good agreement with analytical and semiclassical predictions. When we
go outside the Dirac regime, we observe that sharp n-p junctions no longer show
Klein tunneling because of intervalley scattering. However, this effect can be
suppressed by considering a smooth potential. Klein tunneling holds for
potentials changing on the scale much larger than the interatomic distance.
When the energies of both the electrons and holes are above the Van Hove
singularity, we observe total reflection for both sharp and smooth potential
barriers. Furthermore, we consider caustic formation by a two-dimensional
Gaussian potential. For sufficiently broad potentials we find a good agreement
between the simulated wave density and the classical electron trajectories.Comment: 14 pages, 12 figure
Grey seals (Halichoerus grypus) in the Dutch North sea: population ecology and effects of wind farms
This study was setup to gain an understanding of the possible effects of large-scale development of wind farms in Dutch waters on grey seals (Halichoerus grypus). This should be considered a first step in doing so as up until now relatively little was known about the species in Dutch waters. The study was carried out in the framework of WE@SEA a foundation aimed at acquiring knowledge in the field of offshore wind energy
Harbour porpoises (Phocoena phocoena) and wind farms: a case study in the Dutch North Sea
The rapid increase in development of offshore wind energy in European waters has raised concern for the possible environmental impacts of wind farms. We studied whether harbour porpoise occurrence has been affected by the presence of the Dutch offshore wind farm Egmond aan Zee. This was done by studying acoustic activity of porpoises in the wind farm and in two reference areas using stationary acoustic monitoring (with T-PODs) prior to construction (baseline: June 2003 to June 2004) and during normal operation of the wind farm (operation: April 2007 to April 2009). The results show a strong seasonal pattern, with more activity recorded during winter months. There was also an overall increase in acoustic activity from baseline to operation, in line with a general increase in porpoise abundance in Dutch waters over the last decade. The acoustic activity was significantly higher inside the wind farm than in the reference areas, indicating that the occurrence of porpoises in this area increased as well. The reasons of this apparent preference for the wind farm area are not clear. Two possible causes are discussed: an increased food availability inside the wind farm (reef effect) and/or the absence of vessels in an otherwise heavily trafficked part of the North Sea (sheltering effect
Mapping individual electromagnetic field components inside a photonic crystal
We present a method to map the absolute electromagnetic field strength inside
photonic crystals. We apply the method to map the electric field component Ez
of a two-dimensional photonic crystal slab at microwave frequencies. The slab
is placed between two mirrors to select Bloch standing waves and a
subwavelength spherical scatterer is scanned inside the resulting resonator.
The resonant Bloch frequencies shift depending on the electric field at the
position of the scatterer. To map the electric field component Ez we measure
the frequency shift in the reflection and transmission spectrum of the slab
versus the scatterer position. Very good agreement is found between
measurements and calculations without any adjustable parameters.Comment: 12 pages, 7 figure
Semiclassical theory for plasmons in two-dimensional inhomogeneous media
The progress in two-dimensional materials has led to rapid experimental
developments in quantum plasmonics, where light is manipulated using plasmons.
Although numerical methods can be used to quantitatively describe plasmons in
spatially inhomogeneous systems, they are limited to relatively small setups.
Here, we present a novel semi-analytical method to describe plasmons in
two-dimensional inhomogeneous media within the framework of the Random Phase
Approximation (RPA). Our approach is based on the semiclassical approximation,
which is formally applicable when the length scale of the inhomogeneity is much
larger than the plasmon wavelength. We obtain an effective classical
Hamiltonian for quantum plasmons by first separating the in-plane and
out-of-plane degrees of freedom and subsequently employing the semiclassical
Ansatz for the electrostatic plasmon potential. We illustrate this general
theory by considering scattering of plasmons by radially symmetric
inhomogeneities. We derive a semiclassical expression for the differential
scattering cross section and compute its numerical values for a specific model
of the inhomogeneity.Comment: 27 pages, 9 figure
Rapid recovery of Dutch gray seal colonies fuelled by immigration
Gray seals were first observed breeding in the Dutch Wadden Sea in 1985, after centuries of absence. The breeding colony there is now the largest on the European continent. We describe the changes in gray seal numbers and their geographical expansion, and estimate how these processes were influenced by immigration from other colonies. Counts of hauled out animals were carried out between 1985 and 2013, monitoring three different periods of the seals’ annual cycle. Using priors determined for the UK population, a Bayesian demographic model was fitted to pup numbers to estimate the population parameters driving the growth. This included immigration of sub-adults into the breeding population, which contributed to an average growth rate in the pup counts of 19%/y, much higher than expected in a closed population. This immigration may account for approximately 35% of the total annual growth. In addition, at least 200 grey seals from the UK visit the area temporarily. Recovery of the population in the Netherlands occurred more than 50 yr after gray seals were protected in the UK. These time scales should be taken into account when studying long living marine mammals, e.g. in impact and conservation studies
In search of virus carriers of the 1988 and 2002 phocine distemper virus outbreaks in European harbour seals
European harbour seal (Phoca vitulina) populations decreased substantially during the phocine distemper virus (PDV) outbreaks of 1988 and 2002. Different hypotheses have stated that various seals and terrestrial carnivore species might be the source of infection. To further analyse these hypotheses, grey (Halichoerus grypus) and ringed (Phoca hispida) seals, polar bears (Ursus maritimus) and minks (Mustela lutreola) were sampled from the North Sea and East Greenland coasts between 1988 and 2004 and investigated by RT-PCR using a panmorbillivirus primer pair. However, all samples were negative for morbillivirus nucleic acid
Measurement of the temperature of an ultracold ion source using time-dependent electric fields
We report on a measurement of the characteristic temperature of an ultracold
rubidium ion source, in which a cloud of laser-cooled atoms is converted to
ions by photo-ionization. Extracted ion pulses are focused on a detector with a
pulsed-field technique. The resulting experimental spot sizes are compared to
particle-tracking simulations, from which a source temperature
mK and the corresponding transversal reduced emittance m rad are determined. We find that this result is
likely limited by space charge forces even though the average number of ions
per bunch is 0.022.Comment: 8 pages, 11 figure
Rotating spin-1 bosons in the lowest Landau level
We present results for the ground states of a system of spin-1 bosons in a
rotating trap. We focus on the dilute, weakly interacting regime, and restrict
the bosons to the quantum states in the lowest Landau level (LLL) in the plane
(disc), sphere or torus geometries. We map out parts of the zero temperature
phase diagram, using both exact quantum ground states and LLL mean field
configurations. For the case of a spin-independent interaction we present exact
quantum ground states at angular momentum . For general values of the
interaction parameters, we present mean field studies of general ground states
at slow rotation and of lattices of vortices and skyrmions at higher rotation
rates. Finally, we discuss quantum Hall liquid states at ultra-high rotation.Comment: 24 pages, 14 figures, RevTe
- …