61 research outputs found
Strong Coupling Expansions for Antiferromagnetic Heisenberg S=1/2 Ladders
The properties of antiferromagnetic Heisenberg ladders with
2, 3, and 4 chains are expanded in the ratio of the intra- and interchain
coupling constants. A simple mapping procedure is introduced to relate the 4
and 2-chain ladders which holds down to moderate values of the expansion
parameters. A second order calculation of the spin gap to the lowest triplet
excitation in the 2- and 4-chain ladders is found to be quite accurate even at
the isotropic point where the couplings are equal. Similar expansions and
mapping procedures are presented for the 3-chain ladders which are in the same
universality class as single chains.Comment: 10 physical pages, uuencoded compressed PostScript file including 12
figures, ETH-TH/942
Bound states of magnons in the S=1/2 quantum spin ladder
We study the excitation spectrum of the two-leg antiferromagnetic S=1/2
Heisenberg ladder. Our approach is based on the description of the excitations
as triplets above a strong-coupling singlet ground state. The quasiparticle
spectrum is calculated by treating the excitations as a dilute Bose gas with
infinite on-site repulsion. We find singlet (S=0) and triplet (S=1)
two-particle bound states of the elementary triplets. We argue that bound
states generally exist in any dimerized quantum spin model.Comment: 4 REVTeX pages, 4 Postscript figure
Perturbation Theory for Spin Ladders Using Angular-Momentum Coupled Bases
We compute bulk properties of Heisenberg spin-1/2 ladders using
Rayleigh-Schr\"odinger perturbation theory in the rung and plaquette bases. We
formulate a method to extract high-order perturbative coefficients in the bulk
limit from solutions for relatively small finite clusters. For example, a
perturbative calculation for an isotropic ladder yields an
eleventh-order estimate of the ground-state energy per site that is within
0.02% of the density-matrix-renormalization-group (DMRG) value. Moreover, the
method also enables a reliable estimate of the radius of convergence of the
perturbative expansion. We find that for the rung basis the radius of
convergence is , with defining the ratio between
the coupling along the chain relative to the coupling across the chain. In
contrast, for the plaquette basis we estimate a radius of convergence of
. Thus, we conclude that the plaquette basis offers the
only currently available perturbative approach which can provide a reliable
treatment of the physically interesting case of isotropic spin
ladders. We illustrate our methods by computing perturbative coefficients for
the ground-state energy per site, the gap, and the one-magnon dispersion
relation.Comment: 22 pages. 9 figure
Dualities in Spin Ladders
We introduce a set of discrete modular transformations and
in order to study the relationships between the different phases of
the Heisenberg ladders obtained with all possible exchange coupling constants.
For the 2 legged ladder we show that the phase is invariant under the
transformation, while the Haldane phase is invariant under .
These two phases are related by . Moreover there is a "mixed" phase,
that is invariant under , and which under becomes the RVB
phase, while under becomes the Haldane phase. For odd ladders there
exists only the transformation which, for strong coupling, maps the
effective antiferromagnetic spin 1/2 chain into the spin 3/2 chain.Comment: REVTEX file, 5 pages, 2 EPS figure
Optical absorption of spin ladders
We present a theory of phonon-assisted optical two-magnon absorption in
two-leg spin-ladders. Based on the strong intra-rung-coupling limit we show
that collective excitations of total spin S=0, 1 and 2 exist outside of the
two-magnon continuum. It is demonstrated that the singlet collective state has
a clear signature in the optical spectrum.Comment: 4 pages, 3 figure
Quantum Monte Carlo Simulation of the Trellis Lattice Heisenberg Model for SrCuO and CaVO
We study the spin-1/2 trellis lattice Heisenberg model, a coupled spin ladder
system, both by perturbation around the dimer limit and by quantum Monte Carlo
simulations. We discuss the influence of the inter-ladder coupling on the spin
gap and the dispersion, and present results for the temperature dependence of
the uniform susceptibility. The latter was found to be parameterized well by a
mean-field type scaling ansatz. Finally we discuss fits of experimental
measurements on SrCuO and CaVO to our results.Comment: 7 pages, 8 figure
On the ground state energy scaling in quasi-rung-dimerized spin ladders
On the basis of periodic boundary conditions we study perturbatively a large
N asymptotics (N is the number of rungs) for the ground state energy density
and gas parameter of a spin ladder with slightly destroyed rung-dimerization.
Exactly rung-dimerized spin ladder is treated as the reference model. Explicit
perturbative formulas are obtained for three special classes of spin ladders.Comment: 4 page
Exact results for the thermal and magnetic properties of strong coupling ladder compounds
We investigate the thermal and magnetic properties of the integrable su(4)
ladder model by means of the quantum transfer matrix method. The magnetic
susceptibility, specific heat, magnetic entropy and high field magnetization
are evaluated from the free energy derived via the recently proposed method of
high temperature expansion for exactly solved models. We show that the
integrable model can be used to describe the physics of the strong coupling
ladder compounds. Excellent agreement is seen between the theoretical results
and the experimental data for the known ladder compounds
(5IAP)CuBr2HO, Cu(CHN)Cl etc.Comment: 10 pages, 5 figure
Electronic and Magnetic Structure of LaCuO
The recently-discovered ``ladder'' compound LaCuO has been found to
admit hole doping without altering its structure of coupled copper oxide
ladders. While susceptibility measurements on the parent compound suggest a
spin gap and a spin-liquid state, NMR results indicate magnetic order at low
temperatures. These seemingly contradictory results may be reconciled if in
fact the magnetic state is near the crossover from spin liquid to
antiferromagnet, and we investigate this possibility. From a tight-binding fit
to the valence LDA bandstructure, we deduce that the strength of the
interladder hopping term is approximately half that of intraladder hopping,
showing that the material is three-dimensional in character. A mean-field
treatment of the insulating magnetic state gives a spin-liquid phase whose spin
gap decreases with increasing interladder coupling, vanishing (signalling a
transition to the ordered phase) at a value somewhat below that obtained for
LaCuO. The introduction of an on-site repulsion term, , to the band
scheme causes a transition to an antiferromagnetic insulator for rather small
but finite values of , reflecting the predominance of (one-dimensional)
ladder behavior, and an absence of any special nesting features.Comment: 8 pages + 5 figure
- …