4,743 research outputs found

    Parallel Batch-Dynamic Graph Connectivity

    Full text link
    In this paper, we study batch parallel algorithms for the dynamic connectivity problem, a fundamental problem that has received considerable attention in the sequential setting. The most well known sequential algorithm for dynamic connectivity is the elegant level-set algorithm of Holm, de Lichtenberg and Thorup (HDT), which achieves O(log2n)O(\log^2 n) amortized time per edge insertion or deletion, and O(logn/loglogn)O(\log n / \log\log n) time per query. We design a parallel batch-dynamic connectivity algorithm that is work-efficient with respect to the HDT algorithm for small batch sizes, and is asymptotically faster when the average batch size is sufficiently large. Given a sequence of batched updates, where Δ\Delta is the average batch size of all deletions, our algorithm achieves O(lognlog(1+n/Δ))O(\log n \log(1 + n / \Delta)) expected amortized work per edge insertion and deletion and O(log3n)O(\log^3 n) depth w.h.p. Our algorithm answers a batch of kk connectivity queries in O(klog(1+n/k))O(k \log(1 + n/k)) expected work and O(logn)O(\log n) depth w.h.p. To the best of our knowledge, our algorithm is the first parallel batch-dynamic algorithm for connectivity.Comment: This is the full version of the paper appearing in the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 201

    Quark-Hadron Phase Transitions in Viscous Early Universe

    Get PDF
    Based on hot big bang theory, the cosmological matter is conjectured to undergo QCD phase transition(s) to hadrons, when the universe was about 110μ1-10 \mus old. In the present work, we study the quark-hadron phase transition, by taking into account the effect of the bulk viscosity. We analyze the evolution of the quantities relevant for the physical description of the early universe, namely, the energy density ρ\rho, temperature TT, Hubble parameter HH and scale factor aa before, during and after the phase transition. To study the cosmological dynamics and the time evolution we use both analytical and numerical methods. By assuming that the phase transition may be described by an effective nucleation theory (prompt {\it first-order} phase transition), we also consider the case where the universe evolved through a mixed phase with a small initial supercooling and monotonically growing hadronic bubbles. The numerical estimation of the cosmological parameters, aa and HH for instance, makes it clear that the time evolution varies from phase to phase. As the QCD era turns to be fairly accessible in the high-energy experiments and the lattice QCD simulations, the QCD equation of state is very well defined. In light of this, we introduce a systematic study of the {\it cross-over} quark-hadron phase transition and an estimation for the time evolution of Hubble parameter.Comment: 27 pages, 17 figures, revtex style (To appear in Phys. Rev. D). arXiv admin note: text overlap with arXiv:gr-qc/040404

    Distribution of occupation numbers in finite Fermi-systems and role of interaction in chaos and thermalization

    Full text link
    New method is developed for calculation of single-particle occupation numbers in finite Fermi systems of interacting particles. It is more accurate than the canonical distribution method and gives the Fermi-Dirac distribution in the limit of large number of particles. It is shown that statistical effects of the interaction are absorbed by an increase of the effective temperature. Criteria for quantum chaos and statistical equilibrium are considered. All results are confirmed by numerical experiments in the two-body random interaction model.Comment: 4 pages, Latex, 4 figures in the form of PS-file

    Electron-phonon coupling and longitudinal mechanical-mode cooling in a metallic nanowire

    Get PDF
    We investigate electron-phonon coupling in a narrow suspended metallic wire, in which the phonon modes are restricted to one dimension but the electrons behave three-dimensionally. Explicit theoretical results related to the known bulk properties are derived. We find out that longitudinal vibration modes can be cooled by electronic tunnel refrigeration far below the bath temperature provided the mechanical quality factors of the modes are sufficiently high. The obtained results apply to feasible experimental configurations.Comment: 4+ pages, 3 figure

    The effect of alternative permutation testing strategies on the performance of multifactor dimensionality reduction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multifactor Dimensionality Reduction (MDR) is a novel method developed to detect gene-gene interactions in case-control association analysis by exhaustively searching multi-locus combinations. While the end-goal of analysis is hypothesis generation, significance testing is employed to indicate statistical interest in a resulting model. Because the underlying distribution for the null hypothesis of no association is unknown, non-parametric permutation testing is used. Lately, there has been more emphasis on selecting all statistically significant models at the end of MDR analysis in order to avoid missing a true signal. This approach opens up questions about the permutation testing procedure. Traditionally omnibus permutation testing is used, where one permutation distribution is generated for all models. An alternative is <it>n</it>-locus permutation testing, where a separate distribution is created for each <it>n</it>-level of interaction tested.</p> <p>Findings</p> <p>In this study, we show that the false positive rate for the MDR method is at or below a selected alpha level, and demonstrate the conservative nature of omnibus testing. We compare the power and false positive rates of both permutation approaches and find omnibus permutation testing optimal for preserving power while protecting against false positives.</p> <p>Conclusion</p> <p>Omnibus permutation testing should be used with the MDR method.</p

    BLITZEN: A highly integrated massively parallel machine

    Get PDF
    The architecture and VLSI design of a new massively parallel processing array chip are described. The BLITZEN processing element array chip, which contains 1.1 million transistors, serves as the basis for a highly integrated, miniaturized, high-performance, massively parallel machine that is currently under development. Each processing element has 1K bits of static RAM and performs bit-serial processing with functional elements for arithmetic, logic, and shifting

    Quasi-Particle Degrees of Freedom versus the Perfect Fluid as Descriptors of the Quark-Gluon Plasma

    Full text link
    The hot nuclear matter created at the Relativistic Heavy Ion Collider (RHIC) has been characterized by near-perfect fluid behavior. We demonstrate that this stands in contradiction to the identification of QCD quasi-particles with the thermodynamic degrees of freedom in the early (fluid) stage of heavy ion collisions. The empirical observation of constituent quark ``nqn_q'' scaling of elliptic flow is juxtaposed with the lack of such scaling behavior in hydrodynamic fluid calculations followed by Cooper-Frye freeze-out to hadrons. A ``quasi-particle transport'' time stage after viscous effects break down the hydrodynamic fluid stage, but prior to hadronization, is proposed to reconcile these apparent contradictions. However, without a detailed understanding of the transitions between these stages, the ``nqn_q'' scaling is not a necessary consequence of this prescription. Also, if the duration of this stage is too short, it may not support well defined quasi-particles. By comparing and contrasting the coalescence of quarks into hadrons with the similar process of producing light nuclei from nucleons, it is shown that the observation of ``nqn_{q}'' scaling in the final state does not necessarily imply that the constituent degrees of freedom were the relevant ones in the initial state.Comment: 9 pages, 7 figures, Updated text and figure

    Generalized Kinetic Theory of Electrons and Phonons: Models, Equilibrium, Stability

    Full text link
    In the present paper our aim is to introduce some models for the generalization of the kinetic theory of electrons and phonons (KTEP), as well as to study equilibrium solutions and their stability for the generalized KTEP (GKTEP) equations. We consider a couple of models, relevant to non standard quantum statistics, which give rise to inverse power law decays of the distribution function with respect to energy. In the case of electrons in a phonon background, equilibrium and stability are investigated by means of Lyapounov theory. Connections with thermodynamics are pointed out.Comment: 10 pages, 2 figures, (RevTeX4), to appear in Physica B (2003

    Quantum mechanical sum rules for two model systems

    Full text link
    Sum rules have played an important role in the development of many branches of physics since the earliest days of quantum mechanics. We present examples of one-dimensional quantum mechanical sum rules and apply them in two familiar systems, the infinite well and the single delta-function potential. These cases illustrate the different ways in which such sum rules can be realized, and the varying mathematical techniques by which they can be confirmed. Using the same methods, we also evaluate the second-order energy shifts arising from the introduction of a constant external field, namely the Stark effect.Comment: 23 pages, no figures, to appear in Am. J. Phy

    Radial Spin Helix in Two-Dimensional Electron Systems with Rashba Spin-Orbit Coupling

    Full text link
    We suggest a long-lived spin polarization structure, a radial spin helix, and study its relaxation dynamics. For this purpose, starting with a simple and physically clear consideration of spin transport, we derive a system of equations for spin polarization density and find its general solution in the axially symmetric case. It is demonstrated that the radial spin helix of a certain period relaxes slower than homogeneous spin polarization and plain spin helix. Importantly, the spin polarization at the center of the radial spin helix stays almost unchanged at short times. At longer times, when the initial non-exponential relaxation region ends, the relaxation of the radial spin helix occurs with the same time constant as that describing the relaxation of the plain spin helix.Comment: 9 pages, 7 figure
    corecore