2,461 research outputs found

    Are there nodes in LaFePO, BaFe2_2(AsP)2_2, and KFe2_2As2_2 ?

    Full text link
    We reexamined the experimental evidences for the possible existence of the superconducting (SC) gap nodes in the three most suspected Fe-pnictide SC compounds: LaFePO, BaFe2_2(As0.67_{0.67}P0.33_{0.33})2_2, and KFe2_2As2_2. We showed that while the TT-linear temperature dependence of the penetration depth λ(T)\lambda(T) of these three compounds indicate extremely clean nodal gap superconductors, the thermal conductivity data limT,H0κS(H,T)/T\lim_{T,H \rightarrow 0} \kappa_S (H,T)/T unambiguously showed that LaFePO and BaFe2_2(As0.67_{0.67}P0.33_{0.33})2_2 are extremely dirty, while KFe2_2As2_2 can be clean. This apparently conflicting experimental data casts a serious doubt on the nodal gap possibility on LaFePO and BaFe2_2(As0.67_{0.67}P0.33_{0.33})2_2.Comment: 11 pages, 5 figures A new section "4. Remark on the quantum oscillation (QO) experiments" is adde

    Wiedemann-Franz law and non-vanishing temperature scale across the field-tuned quantum critical point of YbRh2Si2

    Get PDF
    The in-plane thermal conductivity kappa(T) and electrical resistivity rho(T) of the heavy-fermion metal YbRh2Si2 were measured down to 50 mK for magnetic fields H parallel and perpendicular to the tetragonal c axis, through the field-tuned quantum critical point, Hc, at which antiferromagnetic order ends. The thermal and electrical resistivities, w(T) and rho(T), show a linear temperature dependence below 1 K, typical of the non-Fermi liquid behavior found near antiferromagnetic quantum critical points, but this dependence does not persist down to T = 0. Below a characteristic temperature T* ~ 0.35 K, which depends weakly on H, w(T) and rho(T) both deviate downward and converge in the T = 0 limit. We propose that T* marks the onset of short-range magnetic correlations, persisting beyond Hc. By comparing samples of different purity, we conclude that the Wiedemann-Franz law holds in YbRh2Si2, even at Hc, implying that no fundamental breakdown of quasiparticle behavior occurs in this material. The overall phenomenology of heat and charge transport in YbRh2Si2 is similar to that observed in the heavy-fermion metal CeCoIn5, near its own field-tuned quantum critical point.Comment: 8 figures, 8 page

    Atomic-scale coexistence of short-range magnetic order and superconductivity in Fe1+y_{1+y}Se0.1_{0.1}Te0.9_{0.9}

    Get PDF
    The ground state of the parent compounds of many high temperature superconductors is an antiferromagnetically (AFM) ordered phase, where superconductivity emerges when the AFM phase transition is suppressed by doping or application of pressure. This behaviour implies a close relation between the two orders. Understanding the interplay between them promises a better understanding of how the superconducting condensate forms from the AFM ordered background. Here we explore this relation in real space at the atomic scale using low temperature spin-polarized scanning tunneling microscopy (SP-STM) and spectroscopy. We investigate the transition from antiferromagnetically ordered Fe1+yTe\mathrm{Fe}_{1+y}\mathrm{Te} via the spin glass phase in Fe1+ySe0.1Te0.9\mathrm{Fe}_{1+y}\mathrm{Se}_{0.1}\mathrm{Te}_{0.9} to superconducting Fe1+ySe0.15Te0.85\mathrm{Fe}_{1+y}\mathrm{Se}_{0.15}\mathrm{Te}_{0.85}. In Fe1+ySe0.1Te0.9\mathrm{Fe}_{1+y}\mathrm{Se}_{0.1}\mathrm{Te}_{0.9} we observe an atomic-scale coexistence of superconductivity and short-ranged bicollinear antiferromagnetic order.Comment: 7 pages, 6 figure

    From d-wave to s-wave pairing in the iron-pnictide superconductor (Ba,K)Fe2As2

    Full text link
    The nature of the pairing state in iron-based superconductors is the subject of much debate. Here we argue that in one material, the stoichiometric iron pnictide KFe2As2, there is overwhelming evidence for a d-wave pairing state, characterized by symmetry-imposed vertical line nodes in the superconducting gap. This evidence is reviewed, with a focus on thermal conductivity and the strong impact of impurity scattering on the critical temperature Tc. We then compare KFe2As2 to Ba0.6K0.4Fe2As2, obtained by Ba substitution, where the pairing symmetry is s-wave and the Tc is ten times higher. The transition from d-wave to s-wave within the same crystal structure provides a rare opportunity to investigate the connection between band structure and pairing mechanism. We also compare KFe2As2 to the nodal iron-based superconductor LaFePO, for which the pairing symmetry is probably not d-wave, but more likely s-wave with accidental line nodes

    Doping dependence of heat transport in the iron-arsenide superconductor Ba(Fe1x_{1-x}Cox_x)2_2As2_2: from isotropic to strongly kk-dependent gap structure

    Get PDF
    The temperature and magnetic field dependence of the in-plane thermal conductivity κ\kappa of the iron-arsenide superconductor Ba(Fe1x_{1-x}Cox_x)2_2As2_2 was measured down to T50T \simeq 50 mK and up to H=15H = 15 T as a function of Co concentration xx in the range 0.048 x \leq x \leq 0.114. In zero magnetic field, a negligible residual linear term in κ/T\kappa/T as T0T \to 0 at all xx shows that there are no zero-energy quasiparticles and hence the superconducting gap has no nodes in the abab-plane anywhere in the phase diagram. However, the field dependence of κ\kappa reveals a systematic evolution of the superconducting gap with doping xx, from large everywhere on the Fermi surface in the underdoped regime, as evidenced by a flat κ(H)\kappa (H) at T0T \to 0, to strongly kk-dependent in the overdoped regime, where a small magnetic field can induce a large residual linear term, indicative of a deep minimum in the gap magnitude somewhere on the Fermi surface. This shows that the superconducting gap structure has a strongly kk-dependent amplitude around the Fermi surface only outside the antiferromagnetic/orthorhombic phase.Comment: version accepted for publication in Physical Review Letters; new title, minor revision, revised fig.1, and updated reference
    corecore