3,119 research outputs found
Re-Examining Mortality Sources and Population Trends in a Declining Seabird: Using Bayesian Methods to Incorporate Existing Information and New Data
The population of flesh-footed shearwaters (Puffinus carneipes) breeding on Lord Howe Island was shown to be declining
from the 1970’s to the early 2000’s. This was attributed to destruction of breeding habitat and fisheries mortality in the
Australian Eastern Tuna and Billfish Fishery. Recent evidence suggests these impacts have ceased; presumably leading to
population recovery. We used Bayesian statistical methods to combine data from the literature with more recent, but
incomplete, field data to estimate population parameters and trends. This approach easily accounts for sources of variation
and uncertainty while formally incorporating data and variation from different sources into the estimate. There is a 70%
probability that the flesh-footed shearwater population on Lord Howe continued to decline during 2003–2009, and
a number of possible reasons for this are suggested. During the breeding season, road-based mortality of adults on Lord
Howe Island is likely to result in reduced adult survival and there is evidence that breeding success is negatively impacted
by marine debris. Interactions with fisheries on flesh-footed shearwater winter grounds should be further investigated
Whole Genome Sequencing Analysis of Porcine Faecal Commensal Escherichia coli Carrying Class 1 Integrons from Sows and Their Offspring.
Intensive pig production systems often rely on the use of antimicrobials and heavy metal feed additives to maintain animal health and welfare. To gain insight into the carriage of antimicrobial resistance genes (ARGs) in the faecal flora of commercially reared healthy swine, we characterised the genome sequences of 117 porcine commensal E. coli that carried the class 1 integrase gene (intI1+). Isolates were sourced from 42 healthy sows and 126 of their offspring from a commercial breeding operation in Australia in 2017. intI1+ E. coli was detected in 28/42 (67%) sows and 90/126 (71%) piglets. Phylogroup A, particularly clonal complex 10, and phylogroup B1 featured prominently in the study collection. ST10, ST20, ST48 and ST361 were the dominant sequence types. Notably, 113/117 isolates (96%) carried three or more ARGs. Genes encoding resistance to -lactams, aminoglycosides, trimethoprim, sulphonamides, tetracyclines and heavy metals were dominant. ARGs encoding resistance to last-line agents, such as carbapenems and third generation cephalosporins, were not detected. IS26, an insertion sequence noted for its ability to capture and mobilise ARGs, was present in 108/117 (92%) intI1+ isolates, and it played a role in determining class 1 integron structure. Our data shows that healthy Australian pig faeces are an important reservoir of multidrug resistant E. coli that carry genes encoding resistance to multiple first-generation antibiotics and virulence-associated genes
Complete Sequences of Multiple-Drug Resistant IncHI2 ST3 Plasmids in Escherichia coli of Porcine Origin in Australia
© Copyright © 2019 Wyrsch, Reid, DeMaere, Liu, Chapman, Roy Chowdhury and Djordjevic. IncHI2 ST3 plasmids are known carriers of multiple antimicrobial resistance genes. Complete plasmid sequences from multiple drug resistant Escherichia coli circulating in Australian swine is however limited. Here we sequenced two related IncHI2 ST3 plasmids, pSDE-SvHI2, and pSDC-F2_12BHI2, from phylogenetically unrelated multiple-drug resistant Escherichia coli strains SvETEC (CC23:O157:H19) and F2_12B (ST93:O7:H4) from geographically disparate pig production operations in New South Wales, Australia. Unicycler was used to co-assemble short read (Illumina) and long read (PacBio SMRT) nucleotide sequence data. The plasmids encoded three drug-resistance loci, two of which carried class 1 integrons. One integron, hosting drfA12-orfF-aadA2, was within a hybrid Tn1721/Tn21, with the second residing within a copper/silver resistance transposon, comprising part of an atypical sul3-associated structure. The third resistance locus was flanked by IS15DI and encoded neomycin resistance (neoR). An oqx-encoding transposon (quinolone resistance), similar in structure to Tn6010, was identified only in pSDC-F2_12BHI2. Both plasmids showed high sequence identity to plasmid pSTM6-275, recently described in Salmonella enterica serotype 1,4,[5],12:i:- that has risen to prominence and become endemic in Australia. IncHI2 ST3 plasmids circulating in commensal and pathogenic E. coli from Australian swine belong to a lineage of plasmids often in association with sul3 and host multiple complex antibiotic and metal resistance structures, formed in part by IS26
Porcine commensal escherichia coli: A reservoir for class 1 integrons associated with IS26
© 2017 The Authors. Porcine faecal waste is a serious environmental pollutant. Carriage of antimicrobial-resistance genes (ARGs) and virulenceassociated genes (VAGs), and the zoonotic potential of commensal Escherichia coli from swine are largely unknown. Furthermore, little is known about the role of commensal E. coli as contributors to the mobilization of ARGs between food animals and the environment. Here, we report whole-genome sequence analysis of 103 class 1 integron-positive E. coli from the faeces of healthy pigs from two commercial production facilities in New South Wales, Australia. Most strains belonged to phylogroups A and B1, and carried VAGs linked with extraintestinal infection in humans. The 103 strains belonged to 37 multilocus sequence types and clonal complex 10 featured prominently. Seventeen ARGs were detected and 97% (100/103) of strains carried three or more ARGs. Heavy-metal-resistance genes merA, cusA and terA were also common. IS26 was observed in 98% (101/103) of strains and was often physically associated with structurally diverse class 1 integrons that carried unique genetic features, which may be tracked. This study provides, to our knowledge, the first detailed genomic analysis and point of reference for commensal E. coli of porcine origin in Australia, facilitating tracking of specific lineages and the mobile resistance genes they carry
MicroRNAs regulate Ca2+ homeostasis in murine embryonic stem cells
MicroRNAs (miRNAs) are important regulators of embryonic stem cell (ESC) biology, and their study has identified key regulatory mechanisms. To find novel pathways regulated by miRNAs in ESCs, we undertook a bioinformatics analysis of gene pathways differently expressed in the absence of miRNAs due to the deletion of Dicer, which encodes an RNase that is essential for the synthesis of miRNAs. One pathway that stood out was Ca2+ signaling. Interestingly, we found that Dicer-/- ESCs had no difference in basal cytoplasmic Ca2+ levels but were hyperresponsive when Ca2+ import into the endoplasmic reticulum (ER) was blocked by thapsigargin. Remarkably, the increased Ca2+ response to thapsigargin in ESCs resulted in almost no increase in apoptosis and no differences in stress response pathways, despite the importance of miRNAs in the stress response of other cell types. The increased Ca2+ response in Dicer-/- ESCs was also observed during purinergic receptor activation, demonstrating a physiological role for the miRNA regulation of Ca2+ signaling pathways. In examining the mechanism of increased Ca2+ responsiveness to thapsigargin, neither store-operated Ca2+ entry nor Ca2+ clearance mechanisms from the cytoplasm appeared to be involved. Rather, it appeared to involve an increase in the expression of one isoform of the IP3 receptors (Itpr2). miRNA regulation of Itpr2 expression primarily appeared to be indirect, with transcriptional regulation playing a major role. Therefore, the miRNA regulation of Itpr2 expression offers a unique mechanism to regulate Ca2+ signaling pathways in the physiology of pluripotent stem cells
Decellularization of Porcine Lung Tissue
Our project aims to standardize the decellularization of a porcine lung by creating a bioreactor to house the lung, automating the decellularization process and developing a protocol that will increase the precision and the repeatability of the process. Our deliverables include a working prototype, an automated system that will inform the user when the decellularization process is complete, a pressure sensor to control perfusion, and automated pressurized pulses that will increase the rate of decellularization.
Our accomplishments thus far include: a design for a working prototype that will decellularize a porcine lung, determining the proper rate to perfuse the lung, finalizing the list of chemicals and enzymes, and finding a colorimetric cellular assay to determine when decellularization has been completed.
Our research has shown that some amount of degradation of the extracellular matrix (ECM) will occur in the decellularization process. The degradation of the ECM will be minimized by controlling the flow rate to mimic physiological pressure and eliminating any air bubbles trapped within the lung thus allowing a faster perfusion rate of the decellularization chemicals. We can also minimize degradation by modifying existing protocols that already in use and by using a new method, such as N-TIRE, that has yet to be fully investigated.
The first problem we encountered was the identification of an existing automated method to decellularize a porcine lung. To overcome this, we have improved on the functionality by included a method to verify complete decellularization, modifying the protocol to reduce ECM degradation and reducing pressure during perfusion. The second problem that we encountered involved determining which assay could be used to determine if the lung had been fully decellularized by analyzing the fluid expelled from the lung. We chose the Bradford assay due to the visible color change. The third problem was with the lack of communication amongst team members. This was resolved following a meeting and discussion about more effective avenues of communication. The final problems we encountered were with using the N-TIRE method. These include the temporary vasoconstriction induced by the pulses, utilizing the process on an organ the size of the lung, and the possibility of damaging the lung tissue.https://scholarscompass.vcu.edu/capstone/1001/thumbnail.jp
Histological evidence for a supraspinous ligament in sauropod dinosaurs
Supraspinous ossified rods have been reported in the sacra of some derived sauropod dinosaurs. Although different hypotheses have been proposed to explain the origin ofthis structure, histological evidence has never been provided to support or reject any of them. In order to establish its origin, we analyse and characterize the microstructure of thesupraspinous rod of two sauropod dinosaurs from the Upper Cretaceous of Argentina. The supraspinous ossified rod is almost entirely formed by dense Haversian bone. Remains ofprimary bone consist entirely of an avascular tissue composed of two types of fibre-like structures, which are coarse and longitudinally (parallel to the main axis of the element) oriented. These structures are differentiated on the basis of their optical properties under polarized light. Very thin fibrous strands are also observed in some regions. These small fibres are all oriented parallel to one another but perpendicular to the element main axis. Histological features of the primary bone tissue indicate that the sacral supraspinous rod corresponds to an ossified supraspinous ligament. The formation of this structure appears to have been a non-pathological metaplastic ossification, possibly induced by the continuous tensile forces applied to the element.Fil: Cerda, Ignacio Alejandro. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación en PaleobiologÃa y GeologÃa; Argentina. Universidad Nacional de RÃo Negro; ArgentinaFil: Casal, Gabriel. Universidad Nacional de la Patagonia; ArgentinaFil: MartÃnez, Rubén DarÃo. Universidad Nacional de la Patagonia ; ArgentinaFil: Ibiricu, Lucio Manuel. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro Nacional Patagónico; Argentin
Voluntary exercise can strengthen the circadian system in aged mice
Consistent daily rhythms are important to healthy aging according to studies linking disrupted circadian rhythms with negative health impacts. We studied the effects of age and exercise on baseline circadian rhythms and on the circadian system's ability to respond to the perturbation induced by an 8 h advance of the light:dark (LD) cycle as a test of the system's robustness. Mice (male, mPer2luc/C57BL/6) were studied at one of two ages: 3.5 months (n = 39) and >18 months (n = 72). We examined activity records of these mice under entrained and shifted conditions as well as mPER2::LUC measures ex vivo to assess circadian function in the suprachiasmatic nuclei (SCN) and important target organs. Age was associated with reduced running wheel use, fragmentation of activity, and slowed resetting in both behavioral and molecular measures. Furthermore, we observed that for aged mice, the presence of a running wheel altered the amplitude of the spontaneous firing rate rhythm in the SCN in vitro. Following a shift of the LD cycle, both young and aged mice showed a change in rhythmicity properties of the mPER2::LUC oscillation of the SCN in vitro, and aged mice exhibited longer lasting internal desynchrony. Access to a running wheel alleviated some age-related changes in the circadian system. In an additional experiment, we replicated the effect of the running wheel, comparing behavioral and in vitro results from aged mice housed with or without a running wheel (>21 months, n = 8 per group, all examined 4 days after the shift). The impact of voluntary exercise on circadian rhythm properties in an aged animal is a novel finding and has implications for the health of older people living with environmentally induced circadian disruption
- …