111 research outputs found

    Human telomerase activity, telomerase and telomeric template expression in hepatic stem cells and in livers from fetal and postnatal donors

    Get PDF
    Even though telomerase activity has been analyzed in various normal and malignant tissues, including liver, it is still unknown to what extent telomerase can be associated with specific maturational lineage stages

    Peribiliary glands as a niche of extra-pancreatic precursors yielding insulin-producing cells in experimental and human diabetes

    Get PDF
    Peribiliary glands (PBGs) are niches in the biliary tree and containing heterogeneous endodermal stem/progenitors cells that can differentiate, in vitro and in vivo, towards pancreatic islets. The aim of this study was to evaluate, in experimental and human diabetes, proliferation of cells in PBGs and differentiation of the biliary tree stem/progenitor cells (BTSCs) towards insulin-producing cells. Diabetes was generated in mice by intraperitoneal injection of a single dose of 200 mg/kg (N=12) or 120 mg/kg (N=12) of streptozotocin. Liver, pancreas and extrahepatic biliary trees were en bloc dissected and examined. Cells in PBGs proliferated in experimental diabetes, and their proliferation was greatest in the PBGs of the hepato-pancreatic ampulla, and inversely correlated with the pancreatic islet area. In rodents, the cell proliferation in PBGs was characterized by the expansion of Sox9-positive stem/progenitor cells that gave rise to insulin-producing cells. Insulin-producing cells were located mostly in PBGs in the portion of the biliary tree closest to the duodenum, and their appearance was associated with up-regulation of MafA and Gli1 gene expression. In patients with type 2 diabetes, PBGs at the level of the hepato-pancreatic ampulla contained cells showing signs of proliferation and pancreatic fate commitment. In vitro, high glucose concentrations induced the differentiation of human BTSCs cultures towards pancreatic beta cell fates. The cells in PBGs respond to diabetes with proliferation and differentiation towards insulin-producing cells indicating that PBG niches may rescue pancreatic islet impairment in diabetes. These findings offer important implications for the patho-physiology and complications of this disease. This article is protected by copyright. All rights reserved

    Citron Kinase Is a Cell Cycle-dependent, Nuclear Protein Required for G 2 /M Transition of Hepatocytes

    Get PDF
    Citron Kinase (Citron-K) is a cell cycle-dependent protein regulating the G(2)/M transition in hepatocytes. Synchronization studies demonstrated that expression of the Citron-K protein starts at the late S and/or the early G(2) phase after that of cyclin B1. Expression of Citron-K is developmentally regulated. Levels of Citron-K mRNA and protein are highest in embryonic liver and gradually decrease after birth. Citron-K exists in interphase nuclei and begins to disperse into the cytoplasm at prophase. It concentrates at the cleavage furrow and midbody during anaphase, telophase, and cytokinesis, implicating a role in the control of cytokinesis. However, studies with knockouts show that Citron-K is not essential for cytokinesis in hepatocytes. Instead, loss of Citron-K causes a significant increase of G(2) tetraploid nuclei in one-week-old rat and mouse liver. In addition, Citron-K deficiency triggers apoptosis in a small subset of embryonic liver cells. In summary, our data demonstrate that Citron-K has a distinct cell cycle-dependent expression pattern and cellular localization as a downstream target of Rho-GTPase and functions in the control of G(2)/M transition in the hepatocyte cell cycle

    Model of fibrolamellar hepatocellular carcinomas reveals striking enrichment in cancer stem cells

    Get PDF
    The aetiology of human fibrolamellar hepatocellular carcinomas (hFL-HCCs), cancers occurring increasingly in children to young adults, is poorly understood. We present a transplantable tumour line, maintained in immune-compromised mice, and validate it as a bona fide model of hFL-HCCs by multiple methods. RNA-seq analysis confirms the presence of a fusion transcript (DNAJB1-PRKACA) characteristic of hFL-HCC tumours. The hFL-HCC tumour line is highly enriched for cancer stem cells as indicated by limited dilution tumourigenicity assays, spheroid formation and flow cytometry. Immunohistochemistry on the hFL-HCC model, with parallel studies on 27 primary hFL-HCC tumours, provides robust evidence for expression of endodermal stem cell traits. Transcriptomic analyses of the tumour line and of multiple, normal hepatic lineage stages reveal a gene signature for hFL-HCCs closely resembling that of biliary tree stem cells-newly discovered precursors for liver and pancreas. This model offers unprecedented opportunities to investigate mechanisms underlying hFL-HCCs pathogenesis and potential therapies

    In Situ Labeling and Magnetic Resonance Imaging of Transplanted Human Hepatic Stem Cells

    Get PDF
    The purpose is to address the problem in magnetic resonance imaging (MRI) of contrast agent dilution

    Adult human biliary tree stem cells differentiate to β-pancreatic islet cells by treatment with a recombinant human Pdx1 peptide

    Get PDF
    Generation of β-pancreatic cells represents a major goal in research. The aim of this study was to explore a protein-based strategy to induce differentiation of human biliary tree stem cells (hBTSCs) towards β-pancreatic cells. A plasmid containing the sequence of the human pancreatic and duodenal homeobox 1 (PDX1) has been expressed in E. coli. Epithelial-Cell-Adhesion-Molecule positive hBTSCs or mature human hepatocyte cell line, HepG2, were grown in medium to which Pdx1 peptide was added. Differentiation toward pancreatic islet cells were evaluated by the expression of the β-cell transcription factors, Pdx1 and musculoapo-neurotic fibrosarcoma oncogene homolog A, and of the pancreatic hormones, insulin, glucagon, and somatostatin, investigated by real time polymerase chain reaction, western blot, light microscopy and immunofluorescence. C-peptide secretion in response to high glucose was also measured. Results indicated how purified Pdx1 protein corresponding to the primary structure of the human Pdx1 by mass spectroscopy was efficiently produced in bacteria, and transduced into hBTSCs. Pdx1 exposure triggered the expression of both intermediate and mature stage β-cell differentiation markers only in hBTSCs but not in HepG2 cell line. Furthermore, hBTSCs exposed to Pdx1 showed up-regulation of insulin, glucagon and somatostatin genes and formation of 3-dimensional islet-like structures intensely positive for insulin and glucagon. Finally, Pdx1-induced islet-like structures exhibited glucose-regulated C-peptide secretion. In conclusion, the human Pdx1 is highly effective in triggering hBTSC differentiation toward functional β-pancreatic cells

    Progenitor cell niches in the human pancreatic duct system and associated pancreatic duct glands: an anatomical and immunophenotyping study

    Get PDF
    Abstract Pancreatic duct glands (PDGs) are tubule‐alveolar glands associated with the pancreatic duct system and can be considered the anatomical counterpart of peribiliary glands (PBGs) found within the biliary tree. Recently, we demonstrated that endodermal precursor niches exist fetally and postnatally and are composed functionally of stem cells and progenitors within PBGs and of committed progenitors within PDGs. Here we have characterized more extensively the anatomy of human PDGs as novel niches containing cells with multiple phenotypes of committed progenitors. Human pancreata (n = 15) were obtained from cadaveric adult donors. Specimens were processed for histology, immunohistochemistry and immunofluorescence. PDGs were found in the walls of larger pancreatic ducts (diameters > 300 μm) and constituted nearly 4% of the duct wall area. All of the cells identified were negative for nuclear expression of Oct4, a pluripotency gene, and so are presumably committed progenitors and not stem cells. In the main pancreatic duct and in large interlobular ducts, Sox9+ cells represented 5–30% of the cells within PDGs and were located primarily at the bottom of PDGs, whereas rare and scattered Sox9+ cells were present within the surface epithelium. The expression of PCNA, a marker of cell proliferation, paralleled the distribution of Sox9 expression. Sox9+PDG cells proved to be Pdx1+/Ngn3+/–/Oct4A−. Nearly 10% of PDG cells were positive for insulin or glucagon. Intercalated ducts contained Sox9+/Pdx1+/Ngn3+ cells, a phenotype that is presumptive of committed endocrine progenitors. Some intercalated ducts appeared in continuity with clusters of insulin‐positive cells organized in small pancreatic islet‐like structures. In summary, PDGs represent niches of a population of Sox9+ cells exhibiting a pattern of phenotypic traits implicating a radial axis of maturation from the bottoms of the PDGs to the surface of pancreatic ducts. Our results complete the anatomical background that links biliary and pancreatic tracts and could have important implications for the common patho‐physiology of biliary tract and pancreas

    Ex Vivo Conditions for Self-Replication of Human Hepatic Stem Cells

    Get PDF
    Human hepatic stem cells (hHpSCs), identifiable by a unique antigenic profile, have been isolated from human livers and established ex vivo under expansion conditions permissive for self-replication. The conditions consist of a substratum of type III collagen, ideally on Transwell inserts, and Kubota's medium, a serum-free medium developed for hepatic progenitors. Under these conditions the cells demonstrated a doubling time of ∼24 h, generating at least a 16-fold increase in cell number within 7–10 days; were stable at confluence for up to 2 weeks; could be passaged, if on type III collagen, to initiate colonies that went through log-phase growth and saturation density kinetics; and expressed telomerase, indicative of regenerative capacity. The hHpSC colonies remained morphologically and phenotypically stable throughout expressing epithelial cell adhesion molecule, neural cell adhesion molecule, albumin, cytokeratins 8, 18, and 19, but not α-fetoprotein, or intercellular adhesion molecule-1 (ICAM-1). Those maintained under self-replication conditions for more than a month were transplanted and found to engraft in the livers of SCID/nod mice yielding human liver tissue expressing adult liver–specific proteins. The conditions for self-replication should offer ideal culture conditions for generating large numbers of hHpSCs for use in commercial and clinical programs

    Lineage-dependent effects of aryl hydrocarbon receptor agonists contribute to liver tumorigenesis

    Get PDF
    Rodent cancer bioassays indicate that the aryl hydrocarbon receptor (AHR) agonist, 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD), causes increases in both hepatocytic and cholangiocytic tumors. Effects of AHR activation have been evaluated on rodent hepatic stem cells (rHpSCs) versus their descendants, hepatoblasts (rHBs), two lineage stages of multipotent, hepatic precursors with overlapping but also distinct phenotypic traits. This was made possible by defining the first successful culture conditions for ex vivo maintenance of rHpScs consisting of a substratum of hyaluronans and Kubota's medium (KM), a serum-free medium designed for endodermal stem/progenitor cells. Supplementation of KM with leukemia inhibitory factor elicited lineage restriction to rHBs. Cultures were treated with various AHR agonists including TCDD, 6-formylindolo-[3,2-b]carbazole (FICZ), and 3-3'-diindolylmethane (DIM) and then analyzed with a combination of immunocytochemistry, gene expression, and high-content image analysis. The AHR agonists increased proliferation of rHpSCs at concentrations producing a persistent AHR activation as indicated by induction of Cyp1a1. By contrast, treatment with TCDD resulted in a rapid loss of viability of rHBs, even though the culture conditions, in the absence of the agonists, were permissive for survival and expansion of rHBs. The effects were not observed with FICZ and at lower concentrations of DIM. Conclusion: Our findings are consistent with a lineage-dependent mode of action for AHR agonists in rodent liver tumorigenesis through selective expansion of rHpSCs in combination with a toxicity-induced loss of viability of rHBs. These lineage-dependent effects correlate with increased frequency of liver tumors. (Hepatology 2015;61:548-560

    Comprehensive analysis of The Cancer Genome Atlas reveals a unique gene and non-coding RNA signature of fibrolamellar carcinoma

    Get PDF
    Fibrolamellar carcinoma (FLC) is a unique liver cancer primarily affecting young adults and characterized by a fusion event between DNAJB1 and PRKACA. By analyzing RNA-sequencing data from The Cancer Genome Atlas (TCGA) for >9,100 tumors across ~30 cancer types, we show that the DNAJB1-PRKACA fusion is specific to FLCs. We demonstrate that FLC tumors (n = 6) exhibit distinct messenger RNA (mRNA) and long intergenic non-coding RNA (lincRNA) profiles compared to hepatocellular carcinoma (n = 263) and cholangiocarcinoma (n = 36), the two most common liver cancers. We also identify a set of mRNAs (n = 16) and lincRNAs (n = 4), including LINC00473, that distinguish FLC from ~25 other liver and non-liver cancer types. We confirm this unique FLC signature by analysis of two independent FLC cohorts (n = 20 and 34). Lastly, we validate the overexpression of one specific gene in the FLC signature, carbonic anhydrase XII (CA12), at the protein level by western blot and immunohistochemistry. Both the mRNA and lincRNA signatures support a major role for protein kinase A (PKA) signaling in shaping the FLC gene expression landscape, and present novel candidate FLC oncogenes that merit further investigation
    corecore