1,735 research outputs found

    Fibroblast growth factor (FGF) signaling in development and skeletal diseases

    Get PDF
    AbstractFibroblast growth factors (FGF) and their receptors serve many functions in both the developing and adult organism. Humans contain 18 FGF ligands and four FGF receptors (FGFR). FGF ligands are polypeptide growth factors that regulate several developmental processes including cellular proliferation, differentiation, and migration, morphogenesis, and patterning. FGF-FGFR signaling is also critical to the developing axial and craniofacial skeleton. In particular, the signaling cascade has been implicated in intramembranous ossification of cranial bones as well as cranial suture homeostasis. In the adult, FGFs and FGFRs are crucial for tissue repair. FGF signaling generally follows one of three transduction pathways: RAS/MAP kinase, PI3/AKT, or PLCγ. Each pathway likely regulates specific cellular behaviors. Inappropriate expression of FGF and improper activation of FGFRs are associated with various pathologic conditions, unregulated cell growth, and tumorigenesis. Additionally, aberrant signaling has been implicated in many skeletal abnormalities including achondroplasia and craniosynostosis. The biology and mechanisms of the FGF family have been the subject of significant research over the past 30 years. Recently, work has focused on the therapeutic targeting and potential of FGF ligands and their associated receptors. The majority of FGF-related therapy is aimed at age-related disorders. Increased understanding of FGF signaling and biology may reveal additional therapeutic roles, both in utero and postnatally. This review discusses the role of FGF signaling in general physiologic and pathologic embryogenesis and further explores it within the context of skeletal development

    4-H & FFA Livestock Projects: Life Skills Gained and Knowledge Learned

    Get PDF
    Junior Livestock shows are one of the most popular 4-H and FFA projects in Utah. Thousands of youth participate in these shows from every county in Utah. County extension agents and FFA advisors spend much time with livestock committees, leaders, parents, and youth engaged in livestock shows. Can public funds spent on salaries be justified for county 4-H extension agents and FFA advisors who work with junior livestock shows? To help answer this question, 413 youth involved in livestock shows in Utah were surveyed in 2001. Youth were asked to share skills learned from their livestock projects. Value statements along with specific content skills were measured in the survey. The results indicate that from their 4-H and FFA projects, youth learned to accept responsibility, follow instructions, gain self-confidence, follow instructions, “do the right thing” as well as a variety of other values and content skills

    Long-Term Changes in Southern Utah Upland Shrub Communities: A Study in Repeat Photography

    Get PDF
    To evaluate long-term range conditions in southern Utah, 1,879 repeat photographs were made on the Dixie and Fishlake National Forests, and adjoining lower elevation BLM and private lands. Repeat photographs were also made in Zion National Park, Cedar Breaks National Monument, and Bryce Canyon National Park where livestock grazing has been prohibited for many years. Of the total, 926 photo-pairs depict sagebrush (Artemisia spp.) communities and 471 depict mountain brush associations (Cercocaprus ledifolius, C. mountanus, Amelamchier utahensis, Quercus gambelii, Prunus virginiana). Sagebrush decreased in 261 photosets, increased in 386 and remained unchanged in 279, while mountain brush decreased in 10 photopairs, increased in 440, and showed no change in 21. Sagebrush increased on all sites that had been treated and planted to crested wheatgrass (Agropyron desertorum) during the 1950s to 1960s. Most of the decline in sagebrush was due to invasion by pinyon (Pinus spp.) and/or juniper (Juniperus spp.), while an absence of fire is the most likely reason mountain brush increased. The observed changes have major implications for wildlife, and especially mule deer (Odocoileus hemionus) where sagebrush winter ranges have been lost or where mountain brush has grown beyond the reach of browsing animals. All repeat-photosets and descriptive text have been placed on Utah State University’s Extension website and can be accessed at http://extension.usu.edu.rra

    Selection and Culture of Landscape Plants in Utah - A Guide for High Mountain Valleys

    Get PDF
    What traveler, driving across Utah, has not marveled at its diversity of geography, climate and vegetation? From Joshua-trees in the Mojave Desert, to alpine meadows, to pinion-juniper forests set against the red sandstone of the Colorado Plateau, it is truly a state of contrasts

    Divergent adaptive and innate immunological responses are observed in humans following blunt trauma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The immune response to trauma has traditionally been modeled to consist of the systemic inflammatory response syndrome (SIRS) followed by the compensatory anti-inflammatory response syndrome (CARS). We investigated these responses in a homogenous cohort of male, severe blunt trauma patients admitted to a University Hospital surgical intensive care unit (SICU). After obtaining consent, peripheral blood was drawn up to 96 hours following injury. The enumeration and functionality of both myeloid and lymphocyte cell populations were determined.</p> <p>Results</p> <p>Neutrophil numbers were observed to be elevated in trauma patients as compared to healthy controls. Further, neutrophils isolated from trauma patients had increased raft formation and phospho-Akt. Consistent with this, the neutrophils had increased oxidative burst compared to healthy controls. In direct contrast, blood from trauma patients contained decreased naïve T cell numbers. Upon activation with a T cell specific mitogen, trauma patient T cells produced less IFN-gamma as compared to those from healthy controls. Consistent with these results, upon activation, trauma patient T cells were observed to have decreased T cell receptor mediated signaling.</p> <p>Conclusions</p> <p>These results suggest that following trauma, there are concurrent and divergent immunological responses. These consist of a hyper-inflammatory response by the innate arm of the immune system concurrent with a hypo-inflammatory response by the adaptive arm.</p

    Epigenetic Regulation of Mesenchymal Stem Cells: A Focus on Osteogenic and Adipogenic Differentiation

    Get PDF
    Stem cells are characterized by their capability to self-renew and terminally differentiate into multiple cell types. Somatic or adult stem cells have a finite self-renewal capacity and are lineage-restricted. The use of adult stem cells for therapeutic purposes has been a topic of recent interest given the ethical considerations associated with embryonic stem (ES) cells. Mesenchymal stem cells (MSCs) are adult stem cells that can differentiate into osteogenic, adipogenic, chondrogenic, or myogenic lineages. Owing to their ease of isolation and unique characteristics, MSCs have been widely regarded as potential candidates for tissue engineering and repair. While various signaling molecules important to MSC differentiation have been identified, our complete understanding of this process is lacking. Recent investigations focused on the role of epigenetic regulation in lineage-specific differentiation of MSCs have shown that unique patterns of DNA methylation and histone modifications play an important role in the induction of MSC differentiation toward specific lineages. Nevertheless, MSC epigenetic profiles reflect a more restricted differentiation potential as compared to ES cells. Here we review the effect of epigenetic modifications on MSC multipotency and differentiation, with a focus on osteogenic and adipogenic differentiation. We also highlight clinical applications of MSC epigenetics and nuclear reprogramming

    Genome of the house fly, <i>Musca domestica</i> L., a global vector of diseases with adaptations to a septic environment

    Get PDF
    Background: Adult house flies, Musca domestica L., are mechanical vectors of more than 100 devastating diseases that have severe consequences for human and animal health. House fly larvae play a vital role as decomposers of animal wastes, and thus live in intimate association with many animal pathogens. Results: We have sequenced and analyzed the genome of the house fly using DNA from female flies. The sequenced genome is 691 Mb. Compared with Drosophila melanogaster, the genome contains a rich resource of shared and novel protein coding genes, a significantly higher amount of repetitive elements, and substantial increases in copy number and diversity of both the recognition and effector components of the immune system, consistent with life in a pathogen-rich environment. There are 146 P450 genes, plus 11 pseudogenes, in M. domestica, representing a significant increase relative to D. melanogaster and suggesting the presence of enhanced detoxification in house flies. Relative to D. melanogaster, M. domestica has also evolved an expanded repertoire of chemoreceptors and odorant binding proteins, many associated with gustation. Conclusions: This represents the first genome sequence of an insect that lives in intimate association with abundant animal pathogens. The house fly genome provides a rich resource for enabling work on innovative methods of insect control, for understanding the mechanisms of insecticide resistance, genetic adaptation to high pathogen loads, and for exploring the basic biology of this important pest. The genome of this species will also serve as a close out-group to Drosophila in comparative genomic studies

    Quantum state preparation and macroscopic entanglement in gravitational-wave detectors

    Full text link
    Long-baseline laser-interferometer gravitational-wave detectors are operating at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band. Such a low classical noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of 200. This result, along with the prospect for further improvements, heralds the new possibility of experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical behavior of objects in the realm of everyday experience - using gravitational-wave detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer's classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the classical noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum state preparation, and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses, and the performance of the planned Advanced LIGO interferometers in quantum-state preparation

    Searching for a Stochastic Background of Gravitational Waves with LIGO

    Get PDF
    The Laser Interferometer Gravitational-wave Observatory (LIGO) has performed the fourth science run, S4, with significantly improved interferometer sensitivities with respect to previous runs. Using data acquired during this science run, we place a limit on the amplitude of a stochastic background of gravitational waves. For a frequency independent spectrum, the new limit is ΩGW<6.5×105\Omega_{\rm GW} < 6.5 \times 10^{-5}. This is currently the most sensitive result in the frequency range 51-150 Hz, with a factor of 13 improvement over the previous LIGO result. We discuss complementarity of the new result with other constraints on a stochastic background of gravitational waves, and we investigate implications of the new result for different models of this background.Comment: 37 pages, 16 figure
    corecore