837 research outputs found

    Synchronization Gauges and the Principles of Special Relativity

    Full text link
    The axiomatic bases of Special Relativity Theory (SRT) are thoroughly re-examined from an operational point of view, with particular emphasis on the status of Einstein synchronization in the light of the possibility of arbitrary synchronization procedures in inertial reference frames. Once correctly and explicitly phrased, the principles of SRT allow for a wide range of `theories' that differ from the standard SRT only for the difference in the chosen synchronization procedures, but are wholly equivalent to SRT in predicting empirical facts. This results in the introduction, in the full background of SRT, of a suitable synchronization gauge. A complete hierarchy of synchronization gauges is introduced and elucidated, ranging from the useful Selleri synchronization gauge (which should lead, according to Selleri, to a multiplicity of theories alternative to SRT) to the more general Mansouri-Sexl synchronization gauge and, finally, to the even more general Anderson-Vetharaniam-Stedman's synchronization gauge. It is showed that all these gauges do not challenge the SRT, as claimed by Selleri, but simply lead to a number of formalisms which leave the geometrical structure of Minkowski spacetime unchanged. Several aspects of fundamental and applied interest related to the conventional aspect of the synchronization choice are discussed, encompassing the issue of the one-way velocity of light on inertial and rotating reference frames, the GPS's working, and the recasting of Maxwell equations in generic synchronizations. Finally, it is showed how the gauge freedom introduced in SRT can be exploited in order to give a clear explanation of the Sagnac effect for counter-propagating matter beams.Comment: 56 pages, 3 eps figures, invited paper; to appear in Foundations of Physics (Special Issue to honor Prof. Franco Selleri on his 70th birthday

    A model for bidirectional traffic of cytoskeletal motors

    Full text link
    We introduce a stochastic lattice gas model including two particle species and two parallel lanes. One lane with exclusion interaction and directed motion and the other lane without exclusion and unbiased diffusion, mimicking a micotubule filament and the surrounding solution. For a high binding affinity to the filament, jam-like situations dominate the system's behaviour. The fundamental process of position exchange of two particles is approximated. In the case of a many-particle system, we were able to identify a regime in which the system is rather homogenous presenting only small accumulations of particles and a regime in which an important fraction of all particles accumulates in the same cluster. Numerical data proposes that this cluster formation will occur at all densities for large system sizes. Coupling of several filaments leads to an enhanced cluster formation compared to the uncoupled system, suggesting that efficient bidirectional transport on one-dimensional filaments relies on long-ranged interactions and track formation.Comment: 20 pages, 9 figure

    Time on a Rotating Platform

    Get PDF
    Traditional clock synchronisation on a rotating platform is shown to be incompatible with the experimentally established transformation of time. The latter transformation leads directly to solve this problem through noninvariant one-way speed of light. The conventionality of some features of relativity theory allows full compatibility with existing experimental evidence.Comment: 12 pages, Latex, no figure. Copies available at [email protected] accepted for publication in Found. Phys. Let

    Energy efficient plasma processing of industrial wastes

    Get PDF
    The paper presents the results of thermodynamic modeling of the process of joint plasma treatment of non-combustible and combustible industrial wastes. The compositions of water-salt-organic compositions based on these wastes and regimes providing their energy-efficient joint treatment in air plasma have been determined

    A note on light velocity anisotropy

    Get PDF
    It is proved that in experiments on or near the Earth, no anisotropy in the one-way velocity of light may be detected. The very accurate experiments which have been performed to detect such an effect are to be considered significant tests of both special relativity and the equivalence principleComment: 8 pages, LaTex, Gen. Relat. Grav. accepte

    Reichenbach's Common Cause Principle in Algebraic Quantum Field Theory with Locally Finite Degrees of Freedom

    Full text link
    In the paper it will be shown that Reichenbach's Weak Common Cause Principle is not valid in algebraic quantum field theory with locally finite degrees of freedom in general. Namely, for any pair of projections A and B supported in spacelike separated double cones O(a) and O(b), respectively, a correlating state can be given for which there is no nontrivial common cause (system) located in the union of the backward light cones of O(a) and O(b) and commuting with the both A and B. Since noncommuting common cause solutions are presented in these states the abandonment of commutativity can modulate this result: noncommutative Common Cause Principles might survive in these models

    Correlations, deviations and expectations: the Extended Principle of the Common Cause

    Get PDF
    The Principle of the Common Cause is usually understood to provide causal explanations for probabilistic correlations obtaining between causally unrelated events. In this study, an extended interpretation of the principle is proposed, according to which common causes should be invoked to explain positive correlations whose values depart from the ones that one would expect to obtain in accordance to her probabilistic expectations. In addition, a probabilistic model for common causes is tailored which satisfies the generalized version of the principle, at the same time including the standard conjunctive-fork model as a special case

    Non-Abelian Bosonization and Haldane's Conjecture

    Full text link
    We study the long wavelength limit of a spin S Heisenberg antiferromagnetic chain. The fermionic Lagrangian obtained corresponds to a perturbed level 2S SU(2) Wess-Zumino-Witten model. This effective theory is then mapped into a compact U(1) boson interacting with Z_{2S} parafermions. The analysis of this effective theory allows us to show that when S is an integer there is a mass gap to all excitations, whereas this gap vanishes in the half-odd-integer spin case. This gives a field theory treatment of the so-called Haldane's conjecture for arbitrary values of the spin S.Comment: 9 pages REVTeX, no figure

    Noncommutative causality in algebraic quantum field theory

    Get PDF
    In the paper it will be argued that embracing noncommuting common causes in the causal explanation of quantum correlations in algebraic quantum field theory has the following two beneficial consequences: it helps (i) to maintain the validity of Reichenbach's Common Causal Principle and (ii) to provide a local common causal explanation for a set of correlations violating the Bell inequality

    Frequency decoding of periodically timed action potentials through distinct activity patterns in a random neural network

    Full text link
    Frequency discrimination is a fundamental task of the auditory system. The mammalian inner ear, or cochlea, provides a place code in which different frequencies are detected at different spatial locations. However, a temporal code based on spike timing is also available: action potentials evoked in an auditory-nerve fiber by a low-frequency tone occur at a preferred phase of the stimulus-they exhibit phase locking-and thus provide temporal information about the tone's frequency. In an accompanying psychoacoustic study, and in agreement with previous experiments, we show that humans employ this temporal information for discrimination of low frequencies. How might such temporal information be read out in the brain? Here we demonstrate that recurrent random neural networks in which connections between neurons introduce characteristic time delays, and in which neurons require temporally coinciding inputs for spike initiation, can perform sharp frequency discrimination when stimulated with phase-locked inputs. Although the frequency resolution achieved by such networks is limited by the noise in phase locking, the resolution for realistic values reaches the tiny frequency difference of 0.2% that has been measured in humans.Comment: 16 pages, 5 figures, and supplementary informatio
    corecore