837 research outputs found
Synchronization Gauges and the Principles of Special Relativity
The axiomatic bases of Special Relativity Theory (SRT) are thoroughly
re-examined from an operational point of view, with particular emphasis on the
status of Einstein synchronization in the light of the possibility of arbitrary
synchronization procedures in inertial reference frames. Once correctly and
explicitly phrased, the principles of SRT allow for a wide range of `theories'
that differ from the standard SRT only for the difference in the chosen
synchronization procedures, but are wholly equivalent to SRT in predicting
empirical facts. This results in the introduction, in the full background of
SRT, of a suitable synchronization gauge. A complete hierarchy of
synchronization gauges is introduced and elucidated, ranging from the useful
Selleri synchronization gauge (which should lead, according to Selleri, to a
multiplicity of theories alternative to SRT) to the more general Mansouri-Sexl
synchronization gauge and, finally, to the even more general
Anderson-Vetharaniam-Stedman's synchronization gauge. It is showed that all
these gauges do not challenge the SRT, as claimed by Selleri, but simply lead
to a number of formalisms which leave the geometrical structure of Minkowski
spacetime unchanged. Several aspects of fundamental and applied interest
related to the conventional aspect of the synchronization choice are discussed,
encompassing the issue of the one-way velocity of light on inertial and
rotating reference frames, the GPS's working, and the recasting of Maxwell
equations in generic synchronizations. Finally, it is showed how the gauge
freedom introduced in SRT can be exploited in order to give a clear explanation
of the Sagnac effect for counter-propagating matter beams.Comment: 56 pages, 3 eps figures, invited paper; to appear in Foundations of
Physics (Special Issue to honor Prof. Franco Selleri on his 70th birthday
A model for bidirectional traffic of cytoskeletal motors
We introduce a stochastic lattice gas model including two particle species
and two parallel lanes. One lane with exclusion interaction and directed motion
and the other lane without exclusion and unbiased diffusion, mimicking a
micotubule filament and the surrounding solution. For a high binding affinity
to the filament, jam-like situations dominate the system's behaviour. The
fundamental process of position exchange of two particles is approximated. In
the case of a many-particle system, we were able to identify a regime in which
the system is rather homogenous presenting only small accumulations of
particles and a regime in which an important fraction of all particles
accumulates in the same cluster. Numerical data proposes that this cluster
formation will occur at all densities for large system sizes. Coupling of
several filaments leads to an enhanced cluster formation compared to the
uncoupled system, suggesting that efficient bidirectional transport on
one-dimensional filaments relies on long-ranged interactions and track
formation.Comment: 20 pages, 9 figure
Time on a Rotating Platform
Traditional clock synchronisation on a rotating platform is shown to be
incompatible with the experimentally established transformation of time. The
latter transformation leads directly to solve this problem through noninvariant
one-way speed of light. The conventionality of some features of relativity
theory allows full compatibility with existing experimental evidence.Comment: 12 pages, Latex, no figure. Copies available at [email protected]
accepted for publication in Found. Phys. Let
Energy efficient plasma processing of industrial wastes
The paper presents the results of thermodynamic modeling of the process of joint plasma treatment of non-combustible and combustible industrial wastes. The compositions of water-salt-organic compositions based on these wastes and regimes providing their energy-efficient joint treatment in air plasma have been determined
A note on light velocity anisotropy
It is proved that in experiments on or near the Earth, no anisotropy in the
one-way velocity of light may be detected. The very accurate experiments which
have been performed to detect such an effect are to be considered significant
tests of both special relativity and the equivalence principleComment: 8 pages, LaTex, Gen. Relat. Grav. accepte
Reichenbach's Common Cause Principle in Algebraic Quantum Field Theory with Locally Finite Degrees of Freedom
In the paper it will be shown that Reichenbach's Weak Common Cause Principle
is not valid in algebraic quantum field theory with locally finite degrees of
freedom in general. Namely, for any pair of projections A and B supported in
spacelike separated double cones O(a) and O(b), respectively, a correlating
state can be given for which there is no nontrivial common cause (system)
located in the union of the backward light cones of O(a) and O(b) and commuting
with the both A and B. Since noncommuting common cause solutions are presented
in these states the abandonment of commutativity can modulate this result:
noncommutative Common Cause Principles might survive in these models
Correlations, deviations and expectations: the Extended Principle of the Common Cause
The Principle of the Common Cause is usually understood to provide causal explanations for probabilistic correlations obtaining between causally unrelated events. In this study, an extended interpretation of the principle is proposed, according to which common causes should be invoked to explain positive correlations whose values depart from the ones that one would expect to obtain in accordance to her probabilistic expectations. In addition, a probabilistic model for common causes is tailored which satisfies the generalized version of the principle, at the same time including the standard conjunctive-fork model as a special case
Non-Abelian Bosonization and Haldane's Conjecture
We study the long wavelength limit of a spin S Heisenberg antiferromagnetic
chain. The fermionic Lagrangian obtained corresponds to a perturbed level 2S
SU(2) Wess-Zumino-Witten model. This effective theory is then mapped into a
compact U(1) boson interacting with Z_{2S} parafermions. The analysis of this
effective theory allows us to show that when S is an integer there is a mass
gap to all excitations, whereas this gap vanishes in the half-odd-integer spin
case. This gives a field theory treatment of the so-called Haldane's conjecture
for arbitrary values of the spin S.Comment: 9 pages REVTeX, no figure
Noncommutative causality in algebraic quantum field theory
In the paper it will be argued that embracing noncommuting common causes in the causal explanation of quantum correlations in algebraic quantum field theory has the following two beneficial consequences: it helps (i) to maintain the validity of Reichenbach's Common Causal Principle and (ii) to provide a local common causal explanation for a set of correlations violating the Bell inequality
Frequency decoding of periodically timed action potentials through distinct activity patterns in a random neural network
Frequency discrimination is a fundamental task of the auditory system. The
mammalian inner ear, or cochlea, provides a place code in which different
frequencies are detected at different spatial locations. However, a temporal
code based on spike timing is also available: action potentials evoked in an
auditory-nerve fiber by a low-frequency tone occur at a preferred phase of the
stimulus-they exhibit phase locking-and thus provide temporal information about
the tone's frequency. In an accompanying psychoacoustic study, and in agreement
with previous experiments, we show that humans employ this temporal information
for discrimination of low frequencies. How might such temporal information be
read out in the brain? Here we demonstrate that recurrent random neural
networks in which connections between neurons introduce characteristic time
delays, and in which neurons require temporally coinciding inputs for spike
initiation, can perform sharp frequency discrimination when stimulated with
phase-locked inputs. Although the frequency resolution achieved by such
networks is limited by the noise in phase locking, the resolution for realistic
values reaches the tiny frequency difference of 0.2% that has been measured in
humans.Comment: 16 pages, 5 figures, and supplementary informatio
- …