34 research outputs found

    Nichtresonante Laserstreudiagnostik an Hochdruckgasentladungen

    Get PDF
    [no abstract

    Breadboard model of the LISA phasemeter

    Full text link
    An elegant breadboard model of the LISA phasemeter is currently under development by a Danish-German consortium. The breadboard is build in the frame of an ESA technology development activity to demonstrate the feasibility and readiness of the LISA metrology baseline architecture. This article gives an overview about the breadboard design and its components, including the distribution of key functionalities.Comment: 5 pages, 3 figures, published in ASP Conference Series, Vol. 467, 9th LISA Symposium (2012), pp 271-27

    Readout for intersatellite laser interferometry: Measuring low frequency phase fluctuations of HF signals with microradian precision

    Full text link
    Precision phase readout of optical beat note signals is one of the core techniques required for intersatellite laser interferometry. Future space based gravitational wave detectors like eLISA require such a readout over a wide range of MHz frequencies, due to orbit induced Doppler shifts, with a precision in the order of ÎŒrad/Hz\mu \textrm{rad}/\sqrt{\textrm{Hz}} at frequencies between 0.1 mHz0.1\,\textrm{mHz} and 1 Hz1\,\textrm{Hz}. In this paper, we present phase readout systems, so-called phasemeters, that are able to achieve such precisions and we discuss various means that have been employed to reduce noise in the analogue circuit domain and during digitisation. We also discuss the influence of some non-linear noise sources in the analogue domain of such phasemeters. And finally, we present the performance that was achieved during testing of the elegant breadboard model of the LISA phasemeter, that was developed in the scope of an ESA technology development activity.Comment: submitted to Review of Scientific Instruments on April 30th 201

    Ficolin-1 and Ficolin-3 Plasma Levels Are Altered in HIV and HIV/HCV Coinfected Patients From Southern Brazil

    Get PDF
    The complement system is a key component of the innate immune system, participating in the surveillance against infectious agents. Once activated by one of the three different pathways, complement mediates cell lysis, opsonization, signalizes pathogens for phagocytosis and induces the adaptive immune response. The lectin pathway is constituted by several soluble and membrane bound proteins, called pattern recognition molecules (PRM), including mannose binding lectin (MBL), Ficolins-1, -2, and -3, and Collectin 11. These PRMs act on complement activation as recognition molecules of pathogen-associated molecular patterns (PAMPs) such as N-acetylated, found in glycoproteins of viral envelopes. In this study, Ficolin-1 and Ficolin-3 plasma levels were evaluated in 178 HIV patients (93 HIV; 85 HIV/HCV) and 85 controls from southern Brazil. Demographic and clinical-laboratory findings were obtained during medical interview and from medical records. All parameters were assessed by logistic regression, adjusted for age, ancestry, and sex. Significantly lower levels of Ficolin-1 were observed in HIV/HCV coinfected when compared to HIV patients (p = 0.005, median = 516 vs. 667 ng/ul, respectively) and to controls (p < 0.0001, 1186 ng/ul). Ficolin-1 levels were lower in males than in females among HIV patients (p = 0.03) and controls (p = 0.0003), but no association of Ficolin-1 levels with AIDS was observed. On the other hand, Ficolin-3 levels were significantly lower in controls when compared to HIV (p < 0.0001, medians 18,240 vs. 44,030 ng/ml, respectively) and HIV/HCV coinfected (p < 0.0001, 40,351 ng/ml) patients. There was no correlation between Ficolin-1 and Ficolin-3 levels and age, HIV viral load or opportunistic infections. However, Ficolin-3 showed a positive correlation with T CD4 cell counts in HIV monoinfected patients (p = 0.007). We provide here the first assessment of Ficolin-1 and−3 levels in HIV and HIV/HCV coinfected patients, which indicates a distinct role for these pattern recognition molecules in both viral infections

    Laser Interferometer Space Antenna

    Get PDF
    Following the selection of The Gravitational Universe by ESA, and the successful flight of LISA Pathfinder, the LISA Consortium now proposes a 4 year mission in response to ESA's call for missions for L3. The observatory will be based on three arms with six active laser links, between three identical spacecraft in a triangular formation separated by 2.5 million km. LISA is an all-sky monitor and will offer a wide view of a dynamic cosmos using Gravitational Waves as new and unique messengers to unveil The Gravitational Universe. It provides the closest ever view of the infant Universe at TeV energy scales, has known sources in the form of verification binaries in the Milky Way, and can probe the entire Universe, from its smallest scales near the horizons of black holes, all the way to cosmological scales. The LISA mission will scan the entire sky as it follows behind the Earth in its orbit, obtaining both polarisations of the Gravitational Waves simultaneously, and will measure source parameters with astrophysically relevant sensitivity in a band from below 10−4 10^{-4}\,Hz to above 10−1 10^{-1}\,Hz.Comment: Submitted to ESA on January 13th in response to the call for missions for the L3 slot in the Cosmic Vision Programm

    In-Orbit Performance of the GRACE Follow-on Laser Ranging Interferometer

    Get PDF
    The Laser Ranging Interferometer (LRI) instrument on the Gravity Recovery and Climate Experiment (GRACE) Follow-On mission has provided the first laser interferometric range measurements between remote spacecraft, separated by approximately 220 km. Autonomous controls that lock the laser frequency to a cavity reference and establish the 5 degrees of freedom two-way laser link between remote spacecraft succeeded on the first attempt. Active beam pointing based on differential wave front sensing compensates spacecraft attitude fluctuations. The LRI has operated continuously without breaks in phase tracking for more than 50 days, and has shown biased range measurements similar to the primary ranging instrument based on microwaves, but with much less noise at a level of 1 nm/Hz at Fourier frequencies above 100 mHz. © 2019 authors. Published by the American Physical Society
    corecore