17,435 research outputs found

    A radio continuum survey of the southern sky at 1420 MHz. Observations and data reduction

    Get PDF
    We describe the equipment, observational method and reduction procedure of an absolutely calibrated radio continuum survey of the South Celestial Hemisphere at a frequency of 1420 MHz. These observations cover the area 0h < R.A. < 24h for declinations less than -10 degree. The sensitivity is about 50 mK T_B (full beam brightness) and the angular resolution (HPBW) is 35.4', which matches the existing northern sky survey at the same frequency.Comment: 9 pages with 9 figures, A&A, in pres

    G181.1+9.5, a new high-latitude low-surface brightness supernova remnant

    Full text link
    More than 90% of the known Milky Way supernova remnants are within 5 degrees of the Galactic Plane. We present the discovery of the supernova remnant G181.1+9.5, a new high-latitude SNR, serendipitously discovered in an ongoing survey of the Galactic Anti-centre High-Velocity Cloud complex, observed with the DRAO Synthesis Telescope in the 21~cm radio continuum and HI spectral line. We use radio continuum observations (including the linearly polarized component) at 1420~MHz (observed with the DRAO ST) and 4850~MHz (observed with the Effelsberg 100-m radio telescope) to map G181.1+9.5 and determine its nature as a SNR. High-resolution 21~cm HI line observations and HI emission and absorption spectra reveal the physical characteristics of its local interstellar environment. Finally, we estimate the basic physical parameters of G181.1+9.5 using models for highly-evolved SNRs. G181.1+9.5 has a circular shell-like morphology with a radius of about 16~pc at a distance of 1.5 kpc some 250 pc above the mid-plane. The radio observations reveal highly linearly polarized emission with a non-thermal spectrum. Archival ROSAT X-ray data reveal high-energy emission from the interior of G181.1+9.5 indicative of the presence of shock-heated ejecta. The SNR is in the advanced radiative phase of SNR evolution, expanding into the HVC inter-cloud medium with a density of 1 cm~cm^{-3}$. Basic physical attributes of G181.1+9.5 calculated with radiative SNR models show an upper-limit age of 16,000 years, a swept-up mass of more than 300 solar masses, and an ambient density in agreement with that estimated from HI observations. G181.1+9.5 shows all characteristics of a typical mature shell-type SNR, but its observed faintness is unusual and requires further study.Comment: A&A accepted, 11 pages, 13 figure

    A spatial capture-recapture model for territorial species

    Full text link
    Advances in field techniques have lead to an increase in spatially-referenced capture-recapture data to estimate a species' population size as well as other demographic parameters and patterns of space usage. Statistical models for these data have assumed that the number of individuals in the population and their spatial locations follow a homogeneous Poisson point process model, which implies that the individuals are uniformly and independently distributed over the spatial domain of interest. In many applications there is reason to question independence, for example when species display territorial behavior. In this paper, we propose a new statistical model which allows for dependence between locations to account for avoidance or territorial behavior. We show via a simulation study that accounting for this can improve population size estimates. The method is illustrated using a case study of small mammal trapping data to estimate avoidance and population density of adult female field voles (Microtus agrestis) in northern England

    A latent factor model for spatial data with informative missingness

    Full text link
    A large amount of data is typically collected during a periodontal exam. Analyzing these data poses several challenges. Several types of measurements are taken at many locations throughout the mouth. These spatially-referenced data are a mix of binary and continuous responses, making joint modeling difficult. Also, most patients have missing teeth. Periodontal disease is a leading cause of tooth loss, so it is likely that the number and location of missing teeth informs about the patient's periodontal health. In this paper we develop a multivariate spatial framework for these data which jointly models the binary and continuous responses as a function of a single latent spatial process representing general periodontal health. We also use the latent spatial process to model the location of missing teeth. We show using simulated and real data that exploiting spatial associations and jointly modeling the responses and locations of missing teeth mitigates the problems presented by these data.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS278 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Magnetic fields of the W4 superbubble

    Full text link
    Superbubbles and supershells are the channels for transferring mass and energy from the Galactic disk to the halo. Magnetic fields are believed to play a vital role in their evolution. We study the radio continuum and polarized emission properties of the W4 superbubble to determine its magnetic field strength. New sensitive radio continuum observations were made at 6 cm, 11 cm, and 21 cm. The total intensity measurements were used to derive the radio spectrum of the W4 superbubble. The linear polarization data were analysed to determine the magnetic field properties within the bubble shells. The observations show a multi-shell structure of the W4 superbubble. A flat radio continuum spectrum that stems from optically thin thermal emission is derived from 1.4 GHz to 4.8 GHz. By fitting a passive Faraday screen model and considering the filling factor fne , we obtain the thermal electron density ne = 1.0/\sqrt{fne} (\pm5%) cm^-3 and the strength of the line-of-sight component of the magnetic field B// = -5.0/\sqrt{fne} (\pm10%) {\mu}G (i.e. pointing away from us) within the western shell of the W4 superbubble. When the known tilted geometry of the W4 superbubble is considered, the total magnetic field Btot in its western shell is greater than 12 {\mu}G. The electron density and the magnetic field are lower and weaker in the high-latitude parts of the superbubble. The rotation measure is found to be positive in the eastern shell but negative in the western shell of the W4 superbubble, which is consistent with the case that the magnetic field in the Perseus arm is lifted up from the plane towards high latitudes. The magnetic field strength and the electron density we derived for the W4 superbubble are important parameters for evolution models of superbubbles breaking out of the Galactic plane.Comment: 13 pages, 8 figures, accepted for publication in Astronomy & Astrophysic

    A Sino-German 6cm polarisation survey of the Galactic plane IX. HII regions

    Full text link
    Large-scale radio continuum surveys provide data to get insights into the physical properties of radio sources. HII regions are prominent radio sources produced by thermal emission of ionised gas around young massive stars. We identify and analyse HII regions in the Sino-German 6cm polarisation survey of the Galactic plane. Objects with flat radio continuum spectra together with infrared and/or Halpha emission were identified as HII regions. For HII regions with small apparent sizes, we cross-matched the 6cm small-diameter source catalogue with the radio HII region catalogue compiled by Paladini and the infrared HII region catalogue based on the WISE data. Extended HII regions were identified by eye by overlaying the Paladini and the WISE HII regions onto the 6cm survey images for coincidences. The TT-plot method was employed for spectral index verification. A total of 401 HII regions were identified and their flux densities were determined with the Sino-German 6cm survey data. In the surveyed area, 76 pairs of sources are found to be duplicated in the Paladini HII region catalogue, mainly due to the non-distinction of previous observations with different angular resolutions, and 78 objects in their catalogue are misclassified as HII regions, being actually planetary nebulae, supernova remnants or extragalactic sources that have steep spectra. More than 30 HII regions and HII region candidates from our 6cm survey data, especially extended ones, do not have counterparts in the WISE HII region catalogue, of which 9 are identified for the first time. Based on the newly derived radio continuum spectra and the evidence of infrared emission, the previously identified SNRs G11.1-1.0, G20.4+0.1 and G16.4-0.5 are believed to be HII regions.Comment: version after some minor corrections and language editing, full Table 2 - 5 will appear in CDS, accepted for publication in A&
    • …
    corecore