42 research outputs found

    Comparison between the performance of quantitative flow ratio and perfusion imaging for diagnosing myocardial ischemia

    Get PDF
    OBJECTIVES This study compared the performance of the quantitative flow ratio (QFR) with single-photon emission computed tomography (SPECT) and positron emission tomography (PET) myocardial perfusion imaging (MPI) for the diagnosis of fractional flow reserve (FFR)-defined coronary artery disease (CAD).BACKGROUND QFR estimates FFR solely based on cine contrast images acquired during invasive coronary angiography (ICA). Head-to-head studies comparing QFR with noninvasive MPI are lacking.METHODS A total of 208 (624 vessels) patients underwent technetium -99m tetrofosmin SPECT and [15O]H2O PET imaging before ICA in conjunction with FFR measurements. ICA was obtained without using a dedicated QFR acquisition protocol, and QFR computation was attempted in all vessels interrogated by FFR (552 vessels).RESULTS QFR computation succeeded in 286 (52%) vessels. QFR correlated well with invasive FFR overall (R = 0.79; p < 0.001) and in the subset of vessels with an intermediate (30% to 90%) diameter stenosis (R = 0.76; p < 0.001). Overall, per-vessel analysis demonstrated QFR to exhibit a superior sensitivity (70%) in comparison with SPECT (29%; p < 0.001), whereas it was similar to PET (75%; p = 1.000). Specificity of QFR (93%) was higher than PET (79%; p < 0.001) and not different from SPECT (96%; p = 1.000). As such, the accuracy of QFR (88%) was superior to both SPECT (82%; p = 0.010) and PET (78%; p = 0.004). Lastly, the area under the receiver operating characteristics curve of QFR, in the overall sample (0.94) and among vessels with an intermediate lesion (0.90) was higher than SPECT (0.63 and 0.61; p < 0.001 for both) and PET (0.82; p < 0.001 and 0.77; p = 0.002), respectively.CONCLUSIONS In this head-to-head comparative study, QFR exhibited a higher diagnostic value for detecting FFRdefined significant CAD compared with perfusion imaging by SPECT or PET. (J Am Coll Cardiol Img 2020;13:1976-85) (c) 2020 by the American College of Cardiology Foundation.Cardiovascular Aspects of Radiolog

    Gastric volume changes in response to a meal: Validation of magnetic resonance imaging versus the barostat

    No full text
    Purpose: To determine the accuracy of magnetic resonance imaging (MRI) volume scans: 1) to measure known meal volumes in vitro, and 2) to compare volume changes In response to a meal measured with the barostat with those measured with MRI in vivo. Materials and Methods: Polyethylene bags were filled with known volumes and MRI volume scans were performed to determine the accuracy of the volume measurements. Barostat measurements and MRI volume scans were performed simultaneously in 14 healthy subjects before and up to 90 minutes after ingestion of a liquid meal. Results: In vitro MRI-determined volumes showed an excellent linear relationship (r = 0.995, P < 0.001) with actual meal volumes. Although fasting gastric volume, postprandial gastric volume, and relaxation volume measured with MRI were significantly larger compared to volumes measured with the barostat, volumes determined with both techniques showed excellent correlation. Conclusion: Volumes in the range of postprandial meal volumes are accurately measured with MRI. MRI is a non-invasive technique to measure stomach volumes and volume changes in response to a meal. Volume changes in response to a meal measured with MRI correlate perfectly with those measured with the barostat device.Radiolog

    Anatomic considerations of cochlear morphology and its implications for insertion trauma in cochlear implant surgery.

    No full text
    Item does not contain fulltextHYPOTHESIS: The goal of this study is to analyze the 3-dimensional anatomy of the cochlear spiral and to investigate the consequences of its course to insertion trauma during cochlear implantation. BACKGROUND: Insertion trauma in cochlear implant surgery is a feared surgical risk, potentially causing neural degeneration and altered performance of the implant. In literature, insertion trauma is reported to occur at specific locations. This has been ascribed to surgical technique and electrode design in relation to the size of the scala tympani. This study investigates whether there is an underlying anatomic substrate serving as a potential source for insertion trauma at these specific locations. METHODS: The 3-dimensional path of the cochlear spiral of 8 human temporal bones was determined by segmentation, skeletonization, distance mapping, and wave propagation technique applied on microcomputer tomography images. Potential pressure points along this path were estimated with linear regression. RESULTS: The cochlear lumen shows a noncontinuous spiraling path leading to potential pressure points during cochlear implantation at the basilar membrane in the region of 180 to 225 (12-14 mm) and 725 degrees (22-26 mm) and at the floor of the scala tympani around 0 to 90, 225 to 270, and 405 to 450 degrees. CONCLUSION: Our data favor the idea that the intrinsic 3-dimensional cochlear morphology contributes to the risk for insertion trauma during cochlear implantation at specific locations

    Evolution of echocardiography-derived hemodynamic force parameters after cardiac resynchronization therapy

    Get PDF
    Echocardiography-derived hemodynamic forces (HDF) allow calculation of intraventricular pressure gradients from routine transthoracic echocardiographic images. The evolution of HDF after cardiac resynchronization therapy (CRT) has not been investigated in large cohorts. The aim was to assess HDF in patients with heart failure implanted with CRT versus healthy controls. HDF were assessed before and 6 months after CRT. The following HDF parameters were calculated: (1) apical-basal strength, (2) lateral-septal strength, (3) the ratio of lateral-septal to apical-basal strength ratio, and (4) the force vector angle (1 and 2 representing the magnitude of HDF, 3 and 4 representing the orientation of HDF). In the propulsive phase of systole, the apical-basal impulse and the systolic force vector angle were measured. A total of 197 patients were included (age 64 ± 11 years, 62% male), with left ventricular ejection fraction ≤35%, QRS duration ≥130 ms and left bundle branch block. The magnitude of HDF was significantly lower and the orientation was significantly worse in patients with heart failure versus healthy controls. Immediately after CRT implantation, the apical-basal impulse and systolic force vector angle were significantly increased. Six months after CRT, improvement of apical-basal strength, lateral-septal to apical-basal strength ratio and the force vector angle occurred. When CRT was deactivated at 6 months, the increase in the magnitude of apical-basal HDF remained unchanged while the systolic force vector angle worsened significantly. In conclusion, HDF in CRT recipients reflect the acute effect of CRT and the effect of left ventricular reverse remodeling on intraventricular pressure gradients. Whether HDF analysis provides incremental value over established echocardiographic parameters, remains to be determined.Cardiolog
    corecore