3,941 research outputs found
Systematics of heavy-ion fusion hindrance at extreme sub-barrier energies
The recent discovery of hindrance in heavy-ion induced fusion reactions at
extreme sub-barrier energies represents a challenge for theoretical models.
Previously, it has been shown that in medium-heavy systems, the onset of fusion
hindrance depends strongly on the "stiffness" of the nuclei in the entrance
channel. In this work, we explore its dependence on the total mass and the
-value of the fusing systems and find that the fusion hindrance depends in a
systematic way on the entrance channel properties over a wide range of systems.Comment: Submitted to Phys. Rev. Lett., 5 pages, 3 figure
Upper Limit on the molecular resonance strengths in the C+C fusion reaction
Carbon burning is a crucial process for a number of important astrophysical
scenarios. The lowest measured energy is around E=2.1 MeV, only
partially overlapping with the energy range of astrophysical interest. The
currently adopted reaction rates are based on an extrapolation which is highly
uncertain because of potential resonances existing in the unmeasured energy
range and the complication of the effective nuclear potential. By comparing the
cross sections of the three carbon isotope fusion reactions,
C+C, C+C and C+C, we have
established an upper limit on the molecular resonance strengths in
C+C fusion reaction. The preliminary results are presented
and the impact on nuclear astrophysics is discussed.Comment: 4 pages, 3 figures, FUSION11 conference proceedin
Recommended from our members
Communicating new knowledge on previously reported genetic variants
Genetic tests often identify variants whose significance cannot be determined at the time they are reported. In many situations, it is critical that clinicians be informed when new information emerges on these variants. It is already extremely challenging for laboratories to provide these updates. These challenges will grow rapidly as an increasing number of clinical genetic tests are ordered and as the amount of patient DNA assayed per test expands; the challenges will need to be addressed before whole-genome sequencing is used on a widespread basis. Information technology infrastructure can be useful in this context. We have deployed an infrastructure enabling clinicians to receive knowledge updates when a laboratory changes the classification of a variant. We have gathered statistics from this deployment regarding the frequency of both variant classification changes and the effects of these classification changes on patients. We report on the system's functionality as well as the statistics derived from its use. Genet Med 2012:14(8):713–71
Determination of Omega_b From Big Bang Nucleosynthesis in the Presence of Regions of Antimatter
Production of regions of antimatter in the early universe is predicted in
many baryogenesis models. Small scale antimatter regions would annihilate
during or soon after nucleosynthesis, affecting the abundances of the light
elements. In this paper we study how the acceptable range in Omega_b changes in
the presence of antimatter regions, as compared to the standard big bang
nucleosynthesis. It turns out that it is possible to produce at the same time
both a low 4He value (Y_p < 0.240) and a low D/H value (D/H < 4e-5), but
overproduction of 7Li is unavoidable at large Omega_b.Comment: 9 pages, PRD version, ref. 6 correcte
High-Sensitivity Measurement of 3He-4He Isotopic Ratios for Ultracold Neutron Experiments
Research efforts ranging from studies of solid helium to searches for a
neutron electric dipole moment require isotopically purified helium with a
ratio of 3He to 4He at levels below that which can be measured using
traditional mass spectroscopy techniques. We demonstrate an approach to such a
measurement using accelerator mass spectroscopy, reaching the 10e-14 level of
sensitivity, several orders of magnitude more sensitive than other techniques.
Measurements of 3He/4He in samples relevant to the measurement of the neutron
lifetime indicate the need for substantial corrections. We also argue that
there is a clear path forward to sensitivity increases of at least another
order of magnitude.Comment: 11 pages, 10 figure
Hindrance of Heavy-ion Fusion at Extreme Sub-Barrier Energies in Open-shell Colliding Systems
The excitation function for the fusion-evaporation reaction 64Ni+100Mo has
been measured down to a cross-section of ~5 nb. Extensive coupled-channels
calculations have been performed, which cannot reproduce the steep fall-off of
the excitation function at extreme sub-barrier energies. Thus, this system
exhibits a hindrance for fusion, a phenomenon that has been discovered only
recently. In the S-factor representation introduced to quantify the hindrance,
a maximum is observed at E_s=120.6 MeV, which corresponds to 90% of the
reference energy E_s^ref, a value expected from systematics of closed-shell
systems. A systematic analysis of Ni-induced fusion reactions leading to
compound nuclei with mass A=100-200 is presented in order to explore a possible
dependence of the fusion hindrance on nuclear structure.Comment: 10 pages, 9 figures, Submitted to Phys. Rev.
Breakup of F on Pb near the Coulomb barrier
Angular distributions of oxygen produced in the breakup of F incident
on a Pb target have been measured around the grazing angle at beam
energies of 98 and 120 MeV. The data are dominated by the proton stripping
mechanism and are well reproduced by dynamical calculations. The measured
breakup cross section is approximately a factor of 3 less than that of fusion
at 98 MeV. The influence of breakup on fusion is discussed.Comment: 7 pages, 8 figure
The magic nature of 132Sn explored through the single-particle states of 133Sn
Atomic nuclei have a shell structure where nuclei with 'magic numbers' of
neutrons and protons are analogous to the noble gases in atomic physics. Only
ten nuclei with the standard magic numbers of both neutrons and protons have so
far been observed. The nuclear shell model is founded on the precept that
neutrons and protons can move as independent particles in orbitals with
discrete quantum numbers, subject to a mean field generated by all the other
nucleons. Knowledge of the properties of single-particle states outside nuclear
shell closures in exotic nuclei is important for a fundamental understanding of
nuclear structure and nucleosynthesis (for example the r-process, which is
responsible for the production of about half of the heavy elements). However,
as a result of their short lifetimes, there is a paucity of knowledge about the
nature of single-particle states outside exotic doubly magic nuclei. Here we
measure the single-particle character of the levels in 133Sn that lie outside
the double shell closure present at the short-lived nucleus 132Sn. We use an
inverse kinematics technique that involves the transfer of a single nucleon to
the nucleus. The purity of the measured single-particle states clearly
illustrates the magic nature of 132Sn.Comment: 19 pages, 5 figures and 4 table
Influence of nuclear structure on sub-barrier hindrance in Ni+Ni fusion
Fusion-evaporation cross sections for Ni+Ni have been measured
down to the 10 nb level. For fusion between two open-shell nuclei, this is the
first observation of a maximum in the -factor, which signals a strong
sub-barrier hindrance. A comparison with the Ni+Ni,
Ni+Ni, and Ni+Ni systems indicates a strong
dependence of the energy where the hindrance occurs on the stiffness of the
interacting nuclei.Comment: Submitted to Phys. Rev. Lett. 4 pages, 3 figure
- …
