474 research outputs found

    An Autochthonous Mouse Model of Myd88- and BCL2-Driven Diffuse Large B-cell Lymphoma Reveals Actionable Molecular Vulnerabilities

    Get PDF
    Diffuse large B-cell lymphoma is the most common non-Hodgkin`s lymphoma and accounts for 30-40% of newly diagnosed lymphoma. DLBCL can be subdivided in the activated B-cell-like (ABC) and the germinal center B-cell-like (GCB) DLBCL. Large-scale sequencing efforts showed a large overlap between ABC-and GCB-DLBCL. Therefore two research groups recently published new genetic based approaches to classify DLBCL into distinct clusters. The most aggressive cluster in regards to clinical outcome and resistance to first line treatment is the MCD/C5-DLBCL, enriched with former ascribed ABC-DLBCL cases. Two of the most common aberrations in MCD/C5-DLBCL are a copy-number gain of BCL2and a point mutation in MYD88.In this study we present a detailed characterization of our Myd88-and BCL2-driven MCD/C5-DLBCL mouse model. We characterized the mouse model using immune phenotyping, RNA sequencing and whole exome sequencing. We could show that the lymphomas derived from our mouse model resemble genetic features of human MCD/C5-DLBCL. We detected that Myd88and BCL2induce splenomegaly and germinal center formation in vivo. This indicates that the oncogenic Myd88and BCL2overexpression might cooperate in lymphomagenesis. Furthermore we could detect an actionable dependenceof the murine MCD/C5-DLBCL model on BCL2. This BCL2dependence was also shown in human MCD/C5-DLBCL cell lines. Moreover, the human MCD/C5-DLBCL in comparison to the human non-MCD/C5-DLBCL showed a higher expression of PD-L1. Therefore we used our MCD/C5-DLBCL mouse model as preclinical tool to test a combined blockade of BCL2 and PD-1. We observed a significant synergistic effect of the combined treatment in comparison to the single agents and the vehicle control with regard to overall survival and tumor growth control, which could be shown by MRI monitoring.Altogether, we demonstrated that our Myd88/BCL2-driven mouse model resembles many features of the human MCD/C5-DLBCL. Further we could use our MCD/C5-DLBCL mouse model as a preclinical tool to detect actionable molecular vulnerabilities and to test new treatment regimens. Based on the detected cooperation of mutant Myd88and BCL2in murine lymphomagenesis, we were able to show a synergistic effect of combined BCL2 and PD-1 blockade in murine MCD/C5-DLBCL. These data indicate that it could be a reasonable approach to test a combined BCL2/PD-1 blockade inrelapsed or refractory patients

    High-precision measurements of seawater Pb isotope compositions by double spike thermal ionization mass spectrometry

    Get PDF
    A new method for the determination of seawater Pb isotope compositions and concentrations was developed, which combines and optimizes previously published protocols for the separation and isotopic analysis of this element. For isotopic analysis, the procedure involves initial separation of Pb from 1 to 2 L of seawater by co-precipitation with Mg hydroxide and further purification by a two stage anion exchange procedure. The Pb isotope measurements are subsequently carried out by thermal ionization mass spectrometry using a Pb-207-Pb-204 double spike for correction of instrumental mass fractionation. These methods are associated with a total procedural Pb blank of 28 +/- 21 pg(1sd) and typical Pb recoveries of 40-60%. The Pb concentrations are determined by isotope dilution (ID) on 50 mL of seawater, using a simplified version of above methods. Analyses of multiple aliquots of six seawater samples yield a reproducibility of about +/- 1to +/- 10%(1sd) for Pb concentrations of between 7 and 50 pmol/kg, where precision was primarily limited by the uncertainty of the blank correction (12 +/- 4 pg; 1sd). For the Pb isotope analyses, typical reproducibilities (+/- 2sd) of 700-1500 ppm and 1000-2000ppm were achieved for Pb-207/Pb-206, Pb-208/Pb-206 and Pb-206/Pb-204, Pb-207/Pb-204, Pb-208/Pb-204, respectively. These results are superior to literature data that were obtained using plasma source mass spectrometry and they are at least a factor of five more precise for ratios involving the minor Pb-204 isotope. Both Pb concentration and isotope data, furthermore, show good agreement with published results for two seawater intercomparison samples of the GEOTRACES program. Finally, the new methods were applied to a seawater depth profile from the eastern South Atlantic. Both Pb contents and isotope compositions display a smooth evolution with depth, and no obvious outliers. Compared to previous Pb isotope data for seawater, the Pb-206/Pb-204 ratios are well correlated with Pb-207/Pb-206, underlining the significant improvement achieved in the measurement of the minor Pb-204 isotope

    Improvements in Cd stable isotope analysis achieved through use of liquid–liquid extraction to remove organic residues from Cd separates obtained by extraction chromatography

    Get PDF
    Organic compounds released from resins that are commonly employed for trace element separations are known to have a detrimental impact on the quality of isotopic analyses by MC-ICP-MS. A recent study highlighted that such effects can be particularly problematic for Cd stable isotope measurements (M. Gault-Ringold and C. H. Stirling, J. Anal. At. Spectrom., 2012, 27, 449–459). In this case, the final stage of sample purification commonly applies extraction chromatography with Eichrom TRU resin, which employs particles coated with octylphenyl-N,N-di-isobutyl carbamoylphosphine oxide (CMPO) dissolved in tri-n-butyl phosphate (TBP). During chromatography, it appears that some of these compounds are eluted alongside Cd and cannot be removed by evaporation due to their high boiling points. When aliquots of the zero-ε reference material were processed through the purification procedure, refluxed in concentrated HNO(3) and analyzed at minimum dilution (in 1 ml 0.1 M HNO(3)), they yielded Cd isotopic compositions (ε(114/110)Cd = 4.6 ± 3.4, 2SD, n = 4) that differed significantly from the expected value, despite the use of a double spike technique to correct for instrumental mass fractionation. This result was accompanied by a 35% reduction in instrumental sensitivity for Cd. With increasing dilution of the organic resin residue, both of these effects are reduced and they are insignificant when the eluted Cd is dissolved in ≥3 ml 0.1 M HNO(3). Our results, furthermore, indicate that the isotopic artefacts are most likely related to anomalous mass bias behavior. Previous studies have shown that perchloric acid can be effective at avoiding such effects (Gault-Ringold and Stirling, 2012; K. C. Crocket, M. Lambelet, T. van de Flierdt, M. Rehkämper and L. F. Robinson, Chem. Geol., 2014, 374–375, 128–140), presumably by oxidizing the resin-derived organics, but there are numerous disadvantages to its use. Here we show that liquid–liquid extraction with n-heptane removes the organic compounds, dramatically improving quality of the Cd isotope data for samples that are analyzed at or close to minimum dilution factors. This technique is quick, simple and may be of use prior to analysis of other isotope systems where similar resins are employed

    Investigation and application of thallium isotope fractionation

    Get PDF
    This contribution summarizes the current state of understanding and recent advances made in the field of stable thallium (Tl) isotope geochemistry. High precision measurements of Tl isotope compositions were developed in the late 1990s with the advent of multiple collector inductively coupled plasma mass spectrometry (MC-ICP MS) and subsequent studies revealed that Tl, despite the small relative mass difference of the two isotopes, exhibits substantial stable isotope fractionation, especially in the marine environment. The most fractionated reservoirs identified are ferromanganese sediments with ε205 Tl≈ +15 and low temperature altered oceanic crust with ε205 Tl≈–20. The total isotopic variability of more than 35 ε 205 Tl-units hence exceeds the current analytical reproducibility of the measurement technique by more than a factor of 70. This isotopic variation can be explained by invoking a combination of conventional mass dependent equilibrium isotope effects and nuclear field shift isotope fractionation, but the specific mechanisms are still largely unaccounted for. Thallium isotopes have been applied to investigate paleoceanographic processes in the Cenozoic and there is evidence to suggest that Tl isotopes may be utilized as a monitor of the marine manganese oxide burial flux over million year time scales. In addition, Tl isotopes can be used to calculate the magnitude of hydrothermal fluid circulation through ocean crust. It has also been shown that the subduction of marine ferromanganese sediments can be detected with Tl isotopes in lavas erupted in subduction zone settings as well as in ocean island basalts. Meteorite samples display Tl isotope variations that exceed the terrestrial range with a total variability of about 50 ε205 Tl. The large isotopic diversity, however, is generated by both stable Tl isotope fractionations, which reflect the highly volatile and labile cosmochemical nature of the element, and radiogenic decay of extinct 205 Pb to 205 Tl with a half-life of about 15 Ma. The difficulty of deconvolving these two sources of isotopic variability restricts the utility of both the 205 Pb-205 Tl chronometer and the Tl stable isotope system to inform on early solar system processes

    A geochemical study of the winonaites: Evidence for limited partial melting and constraints on the precursor composition

    Get PDF
    The winonaites are primitive achondrites which are associated with the IAB iron meteorites. Textural evidence implies heating to at least the Fe, Ni–FeS cotectic, but previous geochemical studies are ambiguous about the extent of silicate melting in these samples. Oxygen isotope evidence indicates that the precursor material may be related to the carbonaceous chondrites. Here we analysed a suite of winonaites for modal mineralogy and bulk major- and trace-element chemistry in order to assess the extent of thermal processing as well as constrain the precursor composition of the winonaite-IAB parent asteroid. Modal mineralogy and geochemical data are presented for eight winonaites. Textural analysis reveals that, for our sub-set of samples, all except the most primitive winonaite (Northwest Africa 1463) reached the Fe, Ni–FeS cotectic. However, only one (Tierra Blanca) shows geochemical evidence for silicate melting processes. Tierra Blanca is interpreted as a residue of small-degree silicate melting. Our sample of Winona shows geochemical evidence for extensive terrestrial weathering. All other winonaites studied here (Fortuna, Queen Alexander Range 94535, Hammadah al Hamra 193, Pontlyfni and NWA 1463) have chondritic major-element ratios and flat CI-normalised bulk rare-earth element patterns, suggesting that most of the winonaites did not reach the silicate melting temperature. The majority of winonaites were therefore heated to a narrow temperature range of between ∼1220 (the Fe, Ni–FeS cotectic temperature) and ∼1370 K (the basaltic partial melting temperature). Silicate inclusions in the IAB irons demonstrate partial melting did occur in some parts of the parent body (Ruzicka and Hutson, 2010), thereby implying heterogeneous heat distribution within this asteroid. Together, this indicates that melting was the result of internal heating by short-lived radionuclides. The brecciated nature of the winonaites suggests that the parent body was later disrupted by a catastrophic impact, which allowed the preservation of the largely unmelted winonaites. Despite major-element similarities to both ordinary and enstatite chondrites, trace-element analysis suggests the winonaite parent body had a carbonaceous chondrite-like precursor composition. The parent body of the winonaites was volatile-depleted relative to CI, but enriched compared to the other carbonaceous classes. The closest match are the CM chondrites; however, the specific precursor is not sampled in current meteorite collections

    High precision zinc stable isotope measurement of certified biological reference materials using the double spike technique and multiple collector-ICP-MS

    Get PDF
    Biological reference materials with well-characterized s table isotope compositions are lacking in the field of ‘isotope biochemistry’, which seeks to understand bodily processes that rely on essential metals by determining metal stable isotope ratios. Here, we present Zn stable isotope data for six biological reference materials with certified trace metal concentrations, fish muscle, bovine muscle, pig kidney, human hair, human blood serum and human urine. Replicate analyses of multiple aliquots of each material achieved reproducibilities (2sd) of 0.04-0.13 ‰ for δ66/64Zn 22 (which denotes the deviation of the 66 Zn/64Zn ratio of a sample from a pure Zn reference material in parts per 1000). This implies only very minor isotopic heterogeneities within the samples, rendering them suitable as quality control materials for Zn isotopeanalyses. This endorsement is reinforced by (i) the close agreement of our Zn isotope data for two of the samples (bovine 2 muscle and human blood serum) to previously published results for different batches of the same material and (ii) the similarity of the isotopic data for the samples (δ66/64Zn≈ –0.8 to 0.0 ‰) to previously published Zn isotope results for similar biological materials. Further tests revealed that the applied Zn separation procedure is sufficiently effective to enable accurate data acquisition even at low mass resolving power (M/ΔM ≈ 400), as measurements and analyses conducted at much higher mass resolution (M/ΔM ≈ 8500) delivered essentially identical results

    Nucleosynthetic and Mass-Dependent Molybdenum Isotope Anomalies in Iron Meteorites:Constraints on Solar Nebula Heterogeneities and Parent Body Processes

    Get PDF
    While iron meteorite parent bodies exhibit variable deficits in s-process Mo isotopes, they feature essentially identical stable Mo isotope compositions

    The thallium isotope composition of carbonaceous chondrites - New evidence for live 205Pb in the early solar system

    Get PDF
    The extinct radionuclide 205Pb, which decays to 205Tl with a half-life of 15 Ma, is of considerable cosmochemical interest, as it is the only short-lived isotope that is produced exclusively by s-process nucleosynthesis. Evidence for the existence of 205Pb in the early solar system has only recently been obtained from analyses of IAB iron meteorites, but significant uncertainties remain about the initial 205Pb abundance and Tl isotope composition of the solar system. In an attempt to better constrain these values, a comprehensive 205Pb–205Tl isochron study was carried out on ten carbonaceous chondrites of groups CI, CM, CV, CO and CR. The Pb and Cd isotope compositions of the meteorites were also determined, to correct for terrestrial Pb contamination and eliminate samples that exhibit fractionated Tl isotope compositions from thermal processing.\ud The analyses revealed only limited variation in ε205Tl, with values of between − 4.0 and + 1.2, but nonetheless the Tl isotope compositions correlate with Pb/Tl ratios. This correlation is unlikely to be due to stable isotope fractionation from terrestrial weathering or early solar system processes, and is most readily explained by in situ decay of 205Pb to 205Tl. Previous 53Mn–53Cr and 107Pd–107Ag studies of bulk carbonaceous chondrites provide evidence that the Pb–Tl isochron records volatile fractionation in the solar nebula at close to 4567 Ma. The isochron thus yields the initial 205Pb abundance and Tl isotope composition of the solar system, with values of 205Pb/204PbSS,0 = (1.0 ± 0.4) × 10− 3 and ε205TlSS,0 = − 7.6 ± 2.1, respectively. These results confirm the previous Pb–Tl data for IAB iron meteorites, which provided the first clear evidence for the existence of live 205Pb in the early solar system.\ud The initial 205PbSS,0 abundance inferred from carbonaceous chondrites demonstrates that the 205Pb–205Tl decay system is well suited for chronological studies of early solar system processes that produce fractionations in Pb/Tl ratios, including core crystallization and the mobilization of volatiles during thermal processing. The 205PbSS,0 abundance is close to the upper limit of nucleosynthetic production estimates for AGB stars and thus in accord with contributions of such stars to the early solar system budget of freshly synthesized radioisotopes

    Neue Daten zur Bevölkerung mit Migrationshintergrund in Berlin zum Stand 31.12.2007

    Get PDF

    Isotopic evidence for complex biogeochemical cycling of Cd in the eastern tropical South Pacific

    Get PDF
    Over the past decades, observations have confirmed decreasing oxygen levels and shoaling of oxygen minimum zones (OMZs) in the tropical oceans. Such changes impact the biogeochemical cycling of micronutrients such as Cd, but the potential consequences are only poorly constrained. Here, we present seawater Cd concentrations and isotope compositions for 12 depth profiles at coastal, nearshore and offshore stations from 4◦S to 14◦S in the eastern tropical South Pacific, where one of the world’s strongest OMZs prevails. The depth profiles of Cd isotopes display high δ114/110Cd at the surface and decreasing δ114/110Cd with increasing water depth, consistent with preferential utilization of lighter Cd isotopes during biological uptake in the euphotic zone and subsequent remineralization of the sinking biomass. In the surface and subsurface ocean, seawater displays similar δ114/110Cd signatures of 0.47 ± 0.23‰ to 0.82 ± 0.05‰ across the entire eastern tropical South Pacific despite highly variable Cd concentrations between 0.01 and 0.84 nmol/kg. This observation, best explained by an open system steady-state fractionation model, contrasts with previous studies of the South Atlantic and South Pacific Oceans, where only Cd-deficient waters have a relatively constant Cd isotope signature. For the subsurface to about 500 m depth, the variability of seawater Cd isotope compositions can be modeled by mixing of remineralized Cd with subsurface water from the base of the mixed layer. In the intermediate and deep eastern tropical South Pacific (>500 m), seawater [Cd] and δ114/110Cd appear to follow the distribution and mixing of major water masses. We identified modified AAIW of the ETSP to be more enriched in [Cd] than AAIW from the source region, whilst both water masses have similar δ114/110Cd. A mass balance estimate thus constrains a δ114/110Cd of between 0.38‰ and 0.56‰ for the accumulated remineralized Cd in the ETSP. Nearly all samples show a tight coupling of Cd and PO4 concentrations, whereby surface and deeper waters define two distinct linear trends. However, seawater at a coastal station located within a pronounced plume of H2S, is depleted in [Cd] and features significantly higher δ114/110Cd. This signature is attributed to the formation of authigenic CdS with preferential incorporation of lighter Cd isotopes. The process follows a Rayleigh fractionation model with a fractionation factor of α114/110Cdseawater-CdS = 1.00029. Further deviations from the deep Cd–PO4 trend were observed for samples with O2 < 10 μmol/kg and are best explained by in situ CdS precipitation within the decaying organic matter even though dissolved H2S was not detectable in ambient seawater
    • …
    corecore