6 research outputs found

    Rotation Grids for Improved Electrical Properties of Inkjet-Printed Strain Gauges

    No full text
    We report an image data driven approach for inkjet printing (IJP) to improve the electrical properties of printed metallic strain gauges (SGs). The examined SGs contain narrow conducting paths of multiple orientations and therefore suffer from two challenges: 1. The printing direction of inkjet printed conducting paths has an impact on film formation and electrical properties. 2. A loss-free rotation algorithm for IJP image data is lacking. New ways of IJP image data processing are required to compensate for quality-reducing effects. Novel grid types in terms of loss-free rotation algorithms are introduced. For this purpose, a new grid (e.g., 45° tilted) with a different grid constant is placed over a given pixel grid in such a way that all cell centers of the given pixel grid can be transferred to the rotated grid. Via straightening the tilt, the image data is rotated without interpolation and information loss. By applying these methods to measurement gratings of a full bridge with two perpendicular grating orientations, the influence on the manufacturing quality is investigated. It turns out that the electrical detuning of full bridges can be reduced by one order of magnitude compared to state-of-the-art printing by using so-called diagonal rotation grids

    交通事業勞資爭議處理辦法之研究

    No full text
    The BabyLux device is a hybrid diffuse optical neuromonitor that has been developed and built to be employed in neonatal intensive care unit for the noninvasive, cot-side monitoring of microvascular cerebral blood flow and blood oxygenation. It integrates time-resolved near-infrared and diffuse correlation spectroscopies in a user-friendly device as a prototype for a future medical grade device. We present a thorough characterization of the device performance using test measurements in laboratory settings. Tests on solid phantoms report an accuracy of optical property estimation of about 10%, which is expected when using the photon diffusion equation as the model. The measurement of the optical and dynamic properties is stable during several hours of measurements within 3% of the average value. In addition, these measurements are repeatable between different days of measurement, showing a maximal variation of 5% in the optical properties and 8% for the particle diffusion coefficient on a liquid phantom. The variability over test/retest evaluation is <3 %. The integration of the two modalities is robust and without any cross talk between the two. We also perform in vivo measurements on the adult forearm during arterial cuff occlusion to show that the device can measure a wide range of tissue hemodynamic parameters. We suggest that this platform can form the basis of the next-generation neonatal neuromonitors to be developed for extensive, multicenter clinical testing
    corecore