468 research outputs found

    Pulse counting circuit which simultaneously indicates the occurrence of the nth pulse Patent

    Get PDF
    RC transistor circuit to indicate each pulse of pulse train and occurrence of nth puls

    Elastometry of deflated capsules elastic moduli from shape and wrinkle analysis

    Get PDF
    Elastic capsules, prepared from droplets or bubbles attached to a capillary (as in a pendant drop tensiometer), can be deflated by suction through the capillary. We study this deflation and show that a combined analysis of the shape and wrinkling characteristics enables us to determine the elastic properties in situ. Shape contours are analyzed and fitted using shape equations derived from nonlinear membrane-shell theory to give the elastic modulus, Poisson ratio and stress distribution of the membrane. We include wrinkles, which generically form upon deflation, within the shape analysis. Measuring the wavelength of wrinkles and using the calculated stress distribution gives the bending stiffness of the membrane. We illustrate this method on two very different capsule materials: polymerized octadecyltrichlorosilane (OTS) capsules and hydrophobin (HFBII) coated bubbles. Our results are in agreement with the available rheological data. For hydrophobin coated bubbles the method reveals an interesting nonlinear behavior consistent with the hydrophobin molecules having\ud a rigid core surrounded by a softer shell

    Spatio-temporal dynamics of wormlike micelles under shear

    Full text link
    Velocity profiles in a wormlike micelle solution (CTAB in D2O) are recorded using ultrasound every 2 s after a step-like shear rate into the shear-banding regime. The stress relaxation occurs over more than six hours and corresponds to the very slow nucleation and growth of the high-shear band. Moreover, oscillations of the interface position with a period of about 50 s are observed during the growth process. Strong wall slip, metastable states and transient nucleation of three-band flows are also reported and discussed in light of previous experiments and theoretical models.Comment: 4 pages, 5 figures, submitted to Phys.Rev.Let

    Oscillations of a solid sphere falling through a wormlike micellar fluid

    Full text link
    We present an experimental study of the motion of a solid sphere falling through a wormlike micellar fluid. While smaller or lighter spheres quickly reach a terminal velocity, larger or heavier spheres are found to oscillate in the direction of their falling motion. The onset of this instability correlates with a critical value of the velocity gradient scale Γc1\Gamma_{c}\sim 1 s1^{-1}. We relate this condition to the known complex rheology of wormlike micellar fluids, and suggest that the unsteady motion of the sphere is caused by the formation and breaking of flow-induced structures.Comment: 4 pages, 4 figure

    Shift in recreational fishing catches as a function of an extreme cold event

    Get PDF
    There is an increasing recognition that the influence of extreme climate events (ECE) can be more significant in structuring ecosystem dynamics than the gradual effects of climate change. Still, our understanding of the effects of climate extremes on ecosystem services such as marine fisheries lags behind those of effects of gradual change. The significance of ECEs depends on the severity of the disturbance event and the resilience of a fish community. South Florida experienced an extreme cold spell in 2010 that provided the opportunity to study recreational fisheries resilience to ECEs. Our main goal was to examine how recreational fishing catch structures responded to the cold spell, and illustrate any spatial-specific recovery trajectory dynamics after extreme ecological responses. To address this, we implemented multivariate and nonlinear statistics on fishing guide reports for 20 recreational species. A significant shift in the catch structure occurred after the event, suggesting a high sensitivity of fish populations and fisheries in the region to ECEs. All fishing regions considered were affected, but the trajectory of the response and recovery varied across study areas. While some fish species experienced an expected decline (due to mortality), other species manifested an increase in catch. Of the main seven species considered in nonlinear models, three experienced a decline (bonefish, snook, goliath grouper), two experienced an increase (red drum, gray snapper), and the two had various weak trends (tarpon, spotted seatrout). Three years after the event, the catch structure has not returned to the original state, indicating a possible state shift, whose stability needs to be determined in future tracking of affected populations. Future work should also address the extent to which harvest may interfere with resilience to ECEs. Our work highlights the need to account for rare environmental forcing induced by ECEs to ensure the ecological and economical sustainability of key services such as recreational fisheries

    Satellite Estimation of Chlorophyll-a Using Moderate Resolution Imaging Spectroradiometer (MODIS) Sensor in Shallow Coastal Water Bodies: Validation and Improvement

    Get PDF
    The size and distribution of Phytoplankton populations are indicators of the ecological status of a water body. The chlorophyll-a (Chl-a) concentration is estimated as a proxy for the distribution of phytoplankton biomass. Remote sensing is the only practical method for the synoptic assessment of Chl-a at large spatial and temporal scales. Long-term records of ocean color data from the MODIS Aqua Sensor have proven inadequate to assess Chl-a due to the lack of a robust ocean color algorithm. Chl-a estimation in shallow and coastal water bodies has been a challenge and existing operational algorithms are only suitable for deeper water bodies. In this study, the Ocean Color 3M (OC3M) derived Chl-a concentrations were compared with observed data to assess the performance of the OC3M algorithm. Subsequently, a regression analysis between in situ Chl-a and remote sensing reflectance was performed to obtain a green-red band algorithm for coastal (case 2) water. The OC3M algorithm yielded an accurate estimate of Chl-a for deep ocean (case 1) water (RMSE = 0.007, r2 = 0.518, p \u3c 0.001), but failed to perform well in the coastal (case 2) water of Chesapeake Bay (RMSE = 23.217, r2 = 0.009, p = 0.356). The algorithm developed in this study predicted Chl-a more accurately in Chesapeake Bay (RMSE = 4.924, r2 = 0.444, p \u3c 0.001) than the OC3M algorithm. The study indicates a maximum band ratio formulation using green and red bands could improve the satellite estimation of Chl-a in coastal waters

    Ehrenfest relations at the glass transition: solution to an old paradox

    Full text link
    In order to find out whether there exists a thermodynamic description of the glass phase, the Ehrenfest relations along the glass transition line are reconsidered. It is explained that the one involving the compressibility is always satisfied, and that the one involving the specific heat is principally incorrect. Thermodynamical relations are presented for non-ergodic systems with a one-level tree in phase space. They are derived for a spin glass model, checked for other models, and expected to apply, e.g., to glass forming liquids. The second Ehrenfest relation gets a contribution from the configurational entropy.Comment: 4 pages revtex, to appear in Phys. Rev. Let

    Velocity profiles in shear-banding wormlike micelles

    Full text link
    Using Dynamic Light Scattering in heterodyne mode, we measure velocity profiles in a much studied system of wormlike micelles (CPCl/NaSal) known to exhibit both shear-banding and stress plateau behavior. Our data provide evidence for the simplest shear-banding scenario, according to which the effective viscosity drop in the system is due to the nucleation and growth of a highly sheared band in the gap, whose thickness linearly increases with the imposed shear rate. We discuss various details of the velocity profiles in all the regions of the flow curve and emphasize on the complex, non-Newtonian nature of the flow in the highly sheared band.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    Thermodynamics of the glassy state: effective temperature as an additional system parameter

    Full text link
    A system is glassy when the observation time is much smaller than the equilibration time. A unifying thermodynamic picture of the glassy state is presented. Slow configurational modes are in quasi-equilibrium at an effective temperature. It enters thermodynamic relations with the configurational entropy as conjugate variable. Slow fluctuations contribute to susceptibilities via quasi-equilibrium relations, while there is also a configurational term. Fluctuation-dissipation relations also involve the effective temperature. Fluctuations in the energy are non-universal, however. The picture is supported by analytically solving the dynamics of a toy model.Comment: 5 pages, REVTEX. Phys. Rev. Lett, to appea
    corecore