55 research outputs found

    Alternative splicing of human prostaglandin G/H synthase mRNA and evidence of differential regulation of the resulting transcripts by transforming growth factor beta 1, interleukin 1 beta, and tumor necrosis factor alpha.

    Get PDF
    Prostaglandin G/H synthase (PGG/HS) is the rate-limiting enzyme in the conversion of arachidonic acid to prostaglandins and thromboxanes. We screened a human lung fibroblast cDNA library with an ovine PGG/HS cDNA and isolated a 2.3-kilobase clone (HCO-T9). Sequence analysis of this clone showed that (a) it contained the entire translated region of PGG/HS and (b) it displayed an in-frame splicing of the last 111 base pairs encoded by exon 9, which resulted in the elimination of the N-glycosylation site at residue 409. Polymerase chain reaction amplification with specific oligonucleotides of reverse-transcribed mRNA from diverse human tissues and cultured cells yielded 400- and 300-base pair fragments that corresponded, respectively, to the intact and spliced transcripts. The expression of these two transcripts in cultured human lung fibroblasts was differentially regulated by serum, transforming growth factor beta 1, interleukin 1 beta, tumor necrosis factor alpha, and phorbol 12-myristate 13-acetate, as each of these conditions stimulated preferentially the expression of the unspliced transcripts. The elimination of one of the four N-glycosylation sites by the alternative splicing of exon 9 and the differential regulation of this process by relevant cytokines and growth factors may represent a mechanism for the regulation of PGG/HS enzymatic activity under physiological or pathological conditions

    Effect of tree type and rootstock on the long-term performance of ‘Gala’, ‘Fuji’ and ‘Honeycrisp’ apple trees trained to Tall Spindle under New York State climatic conditions

    Get PDF
    In 2006, two 0.3 ha orchard trials were established at two sites (Dressel farm in Southeastern New York State and VandeWalle farm in Western New York State) to compare two tree types (feathered trees and bench-grafted trees) on five rootstocks [three Geneva® rootstocks (G.11, G.16, G.41) with one Budagovsky rootstock (B.9) and one Malling rootstock (M.9T337)] as controls. ‘Gala’ and ‘Fuji’ were used as scion cultivars at Dressel farm and ‘Gala’ and ‘Honeycrisp’ as the scions cultivars at VandeWalle farm. At each location, trees were planted at 3,262 trees ha−1and trained to a Tall Spindle (TS) system. Location, tree type and rootstock interacted to affect tree growth, production and fruit quality of each scion cultivar. ‘Gala’ trees from VandeWalle (Western NY State) were more productive (33% more production) than those from Dressel Farm (Southern NY State), because they produced more fruits per cm−2 and fruit size was bigger. When comparing the two tree types (feathered and bench-grafted) at both locations and across all rootstocks (B.9, G.11, G.16, G.41, and M.9T337), feathered trees were similar in tree size after 11 seasons as bench-grafted ones, except for ‘Fuji’ at Dressel farm where bench-grafted trees were 27% smaller than feathered trees. The bench-grafted trees had lower cumulative yield per hectare, cumulative yield efficiency, and cumulative crop load than the fully feathered trees. Finally, when comparing all 10 tree type × rootstock combinations, for ‘Fuji’, feathered trees with G.11, for ‘Gala’, feathered trees with G.41, and for ‘Honeycrisp’, feathered trees with G.16 were the combinations with the highest cumulative yield, high yield efficiency and crop loads, low biennial bearing, and with slightly significant larger fruits.info:eu-repo/semantics/acceptedVersio

    SHP2 regulates osteoclastogenesis by promoting preosteoclast fusion

    Get PDF
    Genes that regulate osteoclast (OC) development and function in both physiologic and disease conditions remain incompletely understood. Shp2 (the Src homology-2 domain containing protein tyrosine phosphatase 2), a ubiquitously expressed cytoplasmic protein tyrosine phosphatase, is implicated in regulating M-CSF and receptor activator of nuclear factor-κB ligand (RANKL)-evoked signaling; its role in osteoclastogenesis and bone homeostasis, however, remains unknown. Using a tissue-specific gene knockout approach, we inactivated Shp2 expression in murine OCs. Shp2 mutant mice are phenotypically osteopetrotic, featuring a marked increase of bone volume (BV)/total volume (TV) (+42.8%), trabeculae number (Tb.N) (+84.1%), structure model index (+119%), and a decrease of trabecular thickness (Tb.Th) (-34.1%) and trabecular spacing (Tb.Sp) (-41.0%). Biochemical analyses demonstrate that Shp2 is required for RANKL-induced formation of giant multinucleated OCs by up-regulating the expression of nuclear factor of activated T cells, cytoplasmic 1 (Nfatc1), a master transcription factor that is indispensable for terminal OC differentiation. Shp2 deletion, however, has minimal effect on M-CSF-dependent survival and proliferation of OC precursors. Instead, its deficiency aborts the fusion of OC precursors and formation of multinucleated OCs and decreases bone matrix resorption. Moreover, pharmacological intervention of Shp2 is sufficient to prevent preosteoclast fusion in vitro. These findings uncover a novel mechanism through which Shp2 regulates osteoclastogenesis by promoting preosteoclast fusion. Shp2 or its signaling partner(s) could potentially serve as pharmacological target(s) to regulate the population of OCs locally and/or systematically, and thus treat OC-related diseases, such as periprosthetic osteolysis and osteoporosis

    Molecular and cellular mechanisms of heterotopic ossification

    No full text
    Heterotopic ossification (HO) is a debilitating condition in which cartilage and bone forms in soft tissues such as muscle, tendon, and ligament causing immobility. This process is induced by inflammation associated with traumatic injury. In an extremely rare genetic disorder called fibrodysplasia ossificans progessiva (FOP), a combination of inflammation associated with minor soft tissue injuries and a hereditary genetic mutation causes massive HO that progressively worsens throughout the patients’ lifetime leading to the formation of an ectopic skeleton. An activating mutation in the BMP type I receptor ALK2 has been shown to contribute to the heterotopic lesions in FOP patients, yet recent studies have shown that other events are required to stimulate HO including activation of sensory neurons, mast cell degranulation, lymphocyte infiltration, skeletal myocyte cell death, and endothelial-mesenchymal transition (EndMT). In this review, we discuss the recent evidence and mechanistic data that describe the cellular and molecular mechanisms that give rise to heterotopic bone

    Prescription Opioid Use among Acute Gout Patients Discharged from the Emergency Department.

    No full text
    © 2019, American College of Rheumatology Objective: Acute gout is among the most painful inflammatory arthritides and a frequent cause of emergency department (ED) visits. Prescription opioids are the leading contributor to the ongoing opioid epidemic; EDs are often the source of the index prescription. Our aim was to assess the burden of opioid use and factors associated with its use among gout patients discharged from the ED. Methods: In the electronic health records system of Lifespan Healthcare System (currently contains 2.2 million records), adult gout patients discharged from the ED or hospital were identified using International Classification of Diseases, Ninth Revision or Tenth Revision diagnostic codes. The study period was March 2015 to September 2017, and only patients with a primary diagnosis of gout were included. If a patient was seen multiple times, only the first encounter was included. For these patients, we estimated the frequency, dose, and duration of opioids prescribed. Using multivariable logistic regression, we ascertained the factors associated with increased odds of opioid prescription at discharge among patients with acute gout. Results: Of the 456 patients, 129 (28.3%) received opioids at discharge (~80% were new patients). The average dose of prescription was mean ± SD 37.9 ± 17.2 mg of morphine equivalent for a median duration of 8 days (interquartile range 5–14). We noted that patients with polyarticular gout attack and diabetes mellitus and those taking opioids prior to admission had higher odds of receiving opioids at discharge. Conclusion: Despite the availability of effective treatments, opioids are commonly used for the management of acute gout. This study highlights an opportunity to curb the opioid epidemic among gout patients
    • …
    corecore