3 research outputs found

    Prion protein ablation increases cellular aggregation and embolization contributing to mechanisms of metastasis

    No full text
    Cellular Prion Protein (PrP(C)) is a cell surface protein highly expressed in the nervous system, and to a lesser extent in other tissues. PrP(C) binds to the extracellular matrix laminin and vitronectin, to mediate cell adhesion and differentiation. Herein, we investigate how PrP(C) expression modulates the aggressiveness of transformed cells. Mesenchymal embryonic cells (MEC) from wildtype (Prnp(+/+)) and PrP(C)-null (Prnp(0/0)) mice were immortalized and transformed by co-expression of ras and myc. These cells presented similar growth rates and tumor formation in vivo. When injected in the tail vein, PrnP(0/0)raS/myc cells exhibited increased lung colonization compared with Prnp(+/+)ras/myc cells. Additionally, Prnp(0/0)ras/myc cells form more aggregates with blood components than Prnp(+/+)ras/myc cells, facilitating the arrest of Prnp(0/0)ras/myc cells in the lung vasculature. Integrin alpha(v)beta(3) is more expressed and activated in MEC and in transformed Prnp(0/0) cells than in the respective Prnp(+/+) cells. The blocking of integrin alpha(v)beta(3) by RGD peptide reduces lung colonization in transformed Prnp(0/0) cells to similar levels of those presented by transformed Prnp(+/+) cells. Our data indicate that PrP(C) negatively modulates the expression and activation of integrin alpha(v)beta(3) resulting in a more aggressive phenotype. These results indicate that PrP(C) may have main implications in modulating metastasis formation. (C) 2009 UICCFAPES

    Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection

    No full text
    Prions are composed of an isoform of a normal sialoglycoprotein called PrP(c), whose physiological role has been under investigation, with focus on the screening for ligands. Our group described a membrane 66 kDa PrP(c)-binding protein with the aid of antibodies against a peptide deduced by complementary hydropathy. Using these antibodies in western blots from two-dimensional protein gels followed by sequencing the specific spot, we have now identified the molecule as stress-inducible protein 1 (STI1). We show that this protein is also found at the cell membrane besides the cytoplasm. Both proteins interact in a specific and high affinity manner with a K(d) of 10(–7) M. The interaction sites were mapped to amino acids 113–128 from PrP(c) and 230–245 from STI1. Cell surface binding and pull-down experiments showed that recombinant PrP(c) binds to cellular STI1, and co-immunoprecipitation assays strongly suggest that both proteins are associated in vivo. Moreover, PrP(c) interaction with either STI1 or with the peptide we found that represents the binding domain in STI1 induce neuropro tective signals that rescue cells from apoptosis
    corecore