69 research outputs found

    The Evolution of First Person Vision Methods: A Survey

    Full text link
    The emergence of new wearable technologies such as action cameras and smart-glasses has increased the interest of computer vision scientists in the First Person perspective. Nowadays, this field is attracting attention and investments of companies aiming to develop commercial devices with First Person Vision recording capabilities. Due to this interest, an increasing demand of methods to process these videos, possibly in real-time, is expected. Current approaches present a particular combinations of different image features and quantitative methods to accomplish specific objectives like object detection, activity recognition, user machine interaction and so on. This paper summarizes the evolution of the state of the art in First Person Vision video analysis between 1997 and 2014, highlighting, among others, most commonly used features, methods, challenges and opportunities within the field.Comment: First Person Vision, Egocentric Vision, Wearable Devices, Smart Glasses, Computer Vision, Video Analytics, Human-machine Interactio

    Left/Right Hand Segmentation in Egocentric Videos

    Full text link
    Wearable cameras allow people to record their daily activities from a user-centered (First Person Vision) perspective. Due to their favorable location, wearable cameras frequently capture the hands of the user, and may thus represent a promising user-machine interaction tool for different applications. Existent First Person Vision methods handle hand segmentation as a background-foreground problem, ignoring two important facts: i) hands are not a single "skin-like" moving element, but a pair of interacting cooperative entities, ii) close hand interactions may lead to hand-to-hand occlusions and, as a consequence, create a single hand-like segment. These facts complicate a proper understanding of hand movements and interactions. Our approach extends traditional background-foreground strategies, by including a hand-identification step (left-right) based on a Maxwell distribution of angle and position. Hand-to-hand occlusions are addressed by exploiting temporal superpixels. The experimental results show that, in addition to a reliable left/right hand-segmentation, our approach considerably improves the traditional background-foreground hand-segmentation

    A CT Database for Research, Development and Education: Concept and Potential

    Get PDF
    Both in radiology and in surgery, numerous applications are emerging that enable 3D visualization of data from various imaging modalities. In clinical practice, the patient's images are analyzed on work stations in the Radiology Department. For specific preclinical and educational applications, however, data from single patients are insufficient. Instead, similar scans from a number of individuals within a collective must be compiled. The definition of standardized acquisition procedures and archiving formats are prerequisite for subsequent analysis of multiple data sets. Focusing on bone morphology, we describe our concept of a computer database of 3D human bone models obtained from computed tomography (CT) scans. We further discuss and illustrate deployment areas ranging from prosthesis design, over virtual operation simulation up to 3D anatomy atlases. The database of 3D bone models described in this work, created and maintained by the AO Development Institute, may be accessible to research institutes on reques

    Image Fusion for Intraoperative Control of Axis in Long Bone Fracture Treatment

    Get PDF
    Abstract : Background: : The incidence of malalignment after long bone fracture fixation is reported to be between 0 and 37%. Modern fracture treatment strives towards closed reduction and minimally invasive fracture fixation, thus not exposing the fracture itself. Hence, the occurrence of malalignment might even be higher than previously reported and quite frequently even necessitate secondary operations. Minimally invasive techniques rely heavily on intraoperative fluoroscopy. However, fluoroscopic images have small cross-sections and consequently limit intraoperative visualization of the limb to individual segments only. Under these circumstances, correct alignment of fragments in long bone fractures is often compromised. Methods: : We present a new software prototype using an absolute reference panel to concatenate two or more discontinuous fluoroscopic images into one single panoramic picture. The reference panel is placed on the operating table under the limb to be examined. Prior to digital picture fusion, the software applies non-linear distortion, picture scaling and de-rotation algorithms to the fluoroscopic images. Results: : The presented software runs on a notebook and processes images generated by a commercially available mobile C-arm within seconds. The reliability of alignment in the panorama picture is found to be numerically adequate and the technique appropriate for clinical use. Conclusion: : This method aims to improve the intraoperative visualization in minimally invasive osteosynthesis and therefore diminish malalignments in long bone fracture treatmen

    Towards a unified framework for hand-based methods in First Person Vision

    Get PDF
    First Person Vision (Egocentric) video analysis stands nowadays as one of the emerging fields in computer vision. The availability of wearable devices recording exactly what the user is looking at is ineluctable and the opportunities and challenges carried by this kind of devices are broad. Particularly, for the first time a device is so intimate with the user to be able to record the movements of his hands, making hand-based applications for First Person Vision one the most explored area in the field. This paper explores the more popular processing steps to develop hand-based applications, and proposes a hierarchical structure that optimally switches between each of the levels to reduce the computational cost of the system and improve its performance

    Patient-Specific Three-Dimensional Composite Bone Models for Teaching and Operation Planning

    Get PDF
    Background: Orthopedic trauma care relies on two-dimensional radiograms both before and during the operation. Understanding the three-dimensional nature of complex fractures on plain radiograms is challenging. Modern fluoroscopes can acquire three-dimensional volume datasets even during an operation, but the device limitations constrain the acquired volume to a cube of only 12-cm edge. However, viewing the surrounding intact structures is important to comprehend the fracture in its context. We suggest merging a fluoroscope's volume scan into a generic bone model to form a composite full-length 3D bone model. Methods: Materials consisted of one cadaver bone and 20 three-dimensional surface models of human femora. Radiograms and computed tomography scans were taken before and after applying a controlled fracture to the bone. A 3D scan of the fracture was acquired using a mobile fluoroscope (Siemens Siremobil). The fracture was fitted into the generic bone models by rigid registration using a modified least-squares algorithm. Registration precision was determined and a clinical appraisal of the composite models obtained. Results: Twenty composite bone models were generated. Average registration precision was 2.0mm (range 1.6 to 2.6). Average processing time on a laptop computer was 35s (range 20 to 55). Comparing synthesized radiograms with the actual radiograms of the fractured bone yielded clinically satisfactory results. Conclusion: A three-dimensional full-length representation of a fractured bone can reliably be synthesized from a short scan of the patient's fracture and a generic bone model. This patient-specific model can subsequently be used for teaching, surgical operation planning, and intraoperative visualization purpose

    Posterior pelvic ring fractures: Closed reduction and percutaneous CT-guided sacroiliac screw fixation

    Get PDF
    Purpose: To assess the midterm results of closed reduction and percutaneous fixation (CRPF) with computed tomography (CT)-guided sacroiliac screw fixation in longitudinal posterior pelvic ring fractures. Methods: Thirteen patients with 15 fractures were treated. Eleven patients received a unilateral, two a bilateral, screw fixation. Twenty-seven screws were implanted. Continuous on-table traction was used in six cases. Mean radiological follow-up was 13 months. Results: Twenty-five (93%) screws were placed correctly. There was no impingement of screws on neurovascular structures. Union occurred in 12 (80%), delayed union in 2 (13%), and nonunion in 1 of 15 (7%) fractures. There was one screw breakage and two axial dislocations. Conclusion: Sacroiliac CRPF of longitudinal fractures of the posterior pelvic ring is technically simple, minimally invasive, well localized, and stable. It should be done by an interventional/surgical team. CT is an excellent guiding modality. Closed reduction may be a problem and succeeds best when performed as early as possibl

    Fluoroscopy-Based SurgicalNavigation versus Fluoroscopic Guidance to Control Guide WireInsertion for Osteosynthesis of Femoral NeckFractures: An ExperimentalStudy

    Get PDF
    Abstract : Background and Purpose: : Long fluoroscopic times and related radiation exposure are a universal concern when C-arm fluoroscopy is used to guide percutaneous procedures. Fluoroscopy-based surgical navigation has been proposed as an alternative guidance method requiring limited fluoroscopic times to achieve precision. The purpose of this experimental study was to compare fluoroscopy-based surgical navigation with C-arm fluoroscopy for guidance with respect to the precision achieved, the fluoroscopic time, and the resources needed. Material and Methods: : 114 guide wires were placed in 38 synthetic bone models using either C-arm fluoroscopy (group A) or fluoroscopy-based surgical navigation (group B) for guidance. Precision of guide wire placement was rated on the basis of an individual CT scan on all fracture models of both groups. The fluoroscopic time, the procedure time, and the number of attempts required to place the guide wires were documented as well. Results: : An average fluoroscopic time of 26 s was needed with C-arm fluoroscopy to place three guide wires compared with an average fluoroscopic time of 2 s that was needed when fluoroscopy-based surgical navigation was used for guidance (p < 0.0001). Precision of guide wire placement and procedure times required to place the guide wires did not differ significantly between both groups. The number of attempts required for correct placement was found significantly reduced with fluoroscopy-based surgical navigation when compared with fluoroscopic guidance (p = 0.04). Conclusion: : Fluoroscopic times to achieve precision are reduced with fluoroscopy-based surgical navigation compared with C-arm fluoroscopy. The impact of this new technique on minimally invasive, percutaneous procedures has to be evaluated in controlled prospective clinical studie

    Passive Pneumatic Stabilization Device for Assisting in Reduction of Femoral Shaft Fractures

    Get PDF
    During treatment of femoral shaft fractures, not only the actual fracture reduction but also the retention of the achieved reduction is essential. Substantial forces may apply to the bone fragments, due to multidirectional muscular contraction. Furthermore, forces from manipulation of one bone fragment may be transferred over the soft tissues onto the other fragments, thus hindering accurate fracture reduction. Once a sufficient reduction has been achieved, this position must be retained whilst definitive internal fixation is performed. Conventional methods comprise mounting patients on a traction table and applying manual distraction or employing special distraction devices, such as the AO distractor device. These approaches, however, only insufficiently stabilize both main fragments. For example, on the traction table the proximal femoral fragment can pivot around the hip joint thus complicating precise reduction. A novel pneumatic stabilization device to assist surgeons during operative procedures is described. This passive holding device "Passhold” connects to one main fragment through a minimally invasive bone interface and statically locks the fragment's position. Thereafter, only the other main fragment is manipulated to achieve reduction. Mutual interference of the reciprocal fragment positions, due to soft-tissue force transfer during manipulation, is avoided. The authors examined the stability of the novel retention device on a test rig and proved its functionality under sterile settings using cadaver tests. It is concluded that this device largely facilitates the operative procedure in femoral shaft fractures, is sufficiently stable and ergonomically suitable for intraoperative deploymen

    Spontaneous pneumomediastinum in COVID-19 pneumonia.

    Get PDF
    Spontaneous pneumomediastinum is a benign entity but can worsen the underlying condition with which it is associated. We evaluated the incidence and the clinical relevance of spontaneous pneumomediastinum in a consecutive series of 102 patients with COVID-19 pneumonia. Six cases of pneumomediastinum were identified by high-resolution chest CT-scan. Three patients required early intubation, and one of them died, while in in the remaining subjects the clinical course was benign. The presence of pneumomediastinum required some changes in the management of mechanical ventilation. In conclusion, spontaneous pneumomediastinum is a possible complication of severe COVID-19 pneumonia that can affect patient management and clinical outcomes
    • 

    corecore