10 research outputs found

    Findings of Factify 2: Multimodal Fake News Detection

    Full text link
    With social media usage growing exponentially in the past few years, fake news has also become extremely prevalent. The detrimental impact of fake news emphasizes the need for research focused on automating the detection of false information and verifying its accuracy. In this work, we present the outcome of the Factify 2 shared task, which provides a multi-modal fact verification and satire news dataset, as part of the DeFactify 2 workshop at AAAI'23. The data calls for a comparison based approach to the task by pairing social media claims with supporting documents, with both text and image, divided into 5 classes based on multi-modal relations. In the second iteration of this task we had over 60 participants and 9 final test-set submissions. The best performances came from the use of DeBERTa for text and Swinv2 and CLIP for image. The highest F1 score averaged for all five classes was 81.82%.Comment: Defactify2 @AAAI 202

    Overview of Memotion 3: Sentiment and Emotion Analysis of Codemixed Hinglish Memes

    Full text link
    Analyzing memes on the internet has emerged as a crucial endeavor due to the impact this multi-modal form of content wields in shaping online discourse. Memes have become a powerful tool for expressing emotions and sentiments, possibly even spreading hate and misinformation, through humor and sarcasm. In this paper, we present the overview of the Memotion 3 shared task, as part of the DeFactify 2 workshop at AAAI-23. The task released an annotated dataset of Hindi-English code-mixed memes based on their Sentiment (Task A), Emotion (Task B), and Emotion intensity (Task C). Each of these is defined as an individual task and the participants are ranked separately for each task. Over 50 teams registered for the shared task and 5 made final submissions to the test set of the Memotion 3 dataset. CLIP, BERT modifications, ViT etc. were the most popular models among the participants along with approaches such as Student-Teacher model, Fusion, and Ensembling. The best final F1 score for Task A is 34.41, Task B is 79.77 and Task C is 59.82.Comment: Defactify2 @AAAI 202

    Factify 2: A Multimodal Fake News and Satire News Dataset

    Full text link
    The internet gives the world an open platform to express their views and share their stories. While this is very valuable, it makes fake news one of our society's most pressing problems. Manual fact checking process is time consuming, which makes it challenging to disprove misleading assertions before they cause significant harm. This is he driving interest in automatic fact or claim verification. Some of the existing datasets aim to support development of automating fact-checking techniques, however, most of them are text based. Multi-modal fact verification has received relatively scant attention. In this paper, we provide a multi-modal fact-checking dataset called FACTIFY 2, improving Factify 1 by using new data sources and adding satire articles. Factify 2 has 50,000 new data instances. Similar to FACTIFY 1.0, we have three broad categories - support, no-evidence, and refute, with sub-categories based on the entailment of visual and textual data. We also provide a BERT and Vison Transformer based baseline, which acheives 65% F1 score in the test set. The baseline codes and the dataset will be made available at https://github.com/surya1701/Factify-2.0.Comment: Defactify@AAAI202

    Semantic Interpretation of Social Network Communities

    No full text
    A community in a social network is considered to be a group of nodes densely connected internally and sparsely connected externally.Although previous work intensely studied network topology within a community, its semantic interpretation is hardly understood. In this paper, we attempt to understand whether individuals in a community possess similar Personalities, Values and Ethical background. Finally, we show that Personality and Values models could be used as features to discover more accurate community structure compared to the one obtained from only network information

    Simplifying Distributed Neural Network Training on Massive Graphs: Randomized Partitions Improve Model Aggregation

    Full text link
    Distributed training of GNNs enables learning on massive graphs (e.g., social and e-commerce networks) that exceed the storage and computational capacity of a single machine. To reach performance comparable to centralized training, distributed frameworks focus on maximally recovering cross-instance node dependencies with either communication across instances or periodic fallback to centralized training, which create overhead and limit the framework scalability. In this work, we present a simplified framework for distributed GNN training that does not rely on the aforementioned costly operations, and has improved scalability, convergence speed and performance over the state-of-the-art approaches. Specifically, our framework (1) assembles independent trainers, each of which asynchronously learns a local model on locally-available parts of the training graph, and (2) only conducts periodic (time-based) model aggregation to synchronize the local models. Backed by our theoretical analysis, instead of maximizing the recovery of cross-instance node dependencies -- which has been considered the key behind closing the performance gap between model aggregation and centralized training -- , our framework leverages randomized assignment of nodes or super-nodes (i.e., collections of original nodes) to partition the training graph such that it improves data uniformity and minimizes the discrepancy of gradient and loss function across instances. In our experiments on social and e-commerce networks with up to 1.3 billion edges, our proposed RandomTMA and SuperTMA approaches -- despite using less training data -- achieve state-of-the-art performance and 2.31x speedup compared to the fastest baseline, and show better robustness to trainer failures.Comment: 14 pages, 3 figure

    ANALOGICAL - A New Benchmark for Analogy of Long Text for Large Language Models

    No full text
    Over the past decade, analogies, in the form of word-level analogies, have played a significant role as an intrinsic measure of evaluating the quality of word embedding methods such as word2vec. Modern large language models (LLMs), however, are primarily evaluated on extrinsic measures based on benchmarks such as GLUE and SuperGLUE, and there are only a few investigations on whether LLMs can draw analogies between long texts. In this paper, we present ANALOGICAL, a new benchmark to intrinsically evaluate LLMs across a taxonomy of analogies of long text with six levels of complexity – (i) word, (ii) word vs. sentence, (iii) syntactic, (iv) negation, (v) entailment, and (vi) metaphor. Using thirteen datasets and three different distance measures, we evaluate the abilities of eight LLMs in identifying analogical pairs in the semantic vector space (e.g., “I can speak two languages” should be closer to “I am bilingual” while “I like chocolate” and “I do not like chocolate” should be orthogonal). Our evaluation finds that it is increasingly challenging for LLMs to identify analogies when going up the analogy taxonomy

    ANALOGICAL -- A New Benchmark for Analogy of Long Text for Large Language Models

    Full text link
    Over the past decade, analogies, in the form of word-level analogies, have played a significant role as an intrinsic measure of evaluating the quality of word embedding methods such as word2vec. Modern large language models (LLMs), however, are primarily evaluated on extrinsic measures based on benchmarks such as GLUE and SuperGLUE, and there are only a few investigations on whether LLMs can draw analogies between long texts. In this paper, we present ANALOGICAL, a new benchmark to intrinsically evaluate LLMs across a taxonomy of analogies of long text with six levels of complexity -- (i) word, (ii) word vs. sentence, (iii) syntactic, (iv) negation, (v) entailment, and (vi) metaphor. Using thirteen datasets and three different distance measures, we evaluate the abilities of eight LLMs in identifying analogical pairs in the semantic vector space. Our evaluation finds that it is increasingly challenging for LLMs to identify analogies when going up the analogy taxonomy.Comment: Accepted as a long paper at Findings of ACL 202
    corecore