197 research outputs found

    A detailed determination of the a priori mixing angles in non-leptonic decays of hyperons

    Get PDF
    Non-leptonic Decays of Hyperons can provide a detailed determination of the a priori mixing angles that appear in physical hadrons in the approach in which non-perturbative flavor and parity violations are present in tiny pieces of the hadron mass operator. The determination of such angles in these decays will provide a bench mark to test their necessary universality-like property in other types of decays. Our main result is that the magnitudes of the a priori mixing angles can be determined quite accurately

    NLO-QCD corrections to e+ e- --> hadrons in models of TeV-scale gravity

    Full text link
    We present results on NLO-QCD corrections to the process e+ e- --> hadrons via photon-, Z- and graviton-exchange in the context of TeV-scale gravity models. The quantitative impact of these QCD corrections for searches of extra dimensions at a Linear Collider is briefly discussed.Comment: 10 pages, LaTeX, using axodraw.st

    CP and Lepton-Number Violation in GUT Neutrino Models with Abelian Flavour Symmetries

    Get PDF
    We study the possible magnitudes of CP and lepton-number-violating quantities in specific GUT models of massive neutrinos with different Abelian flavour groups, taking into account experimental constraints and requiring successful leptogenesis. We discuss SU(5) and flipped SU(5) models that are consistent with the present data on neutrino mixing and upper limits on the violations of charged-lepton flavours and explore their predictions for the CP-violating oscillation and Majorana phases. In particular, we discuss string-derived flipped SU(5) models with selection rules that modify the GUT structure and provide additional constraints on the operators, which are able to account for the magnitudes of some of the coefficients that are often set as arbitrary parameters in generic Abelian models.Comment: 30 pages, 6 figure

    Open-closed duality and Double Scaling

    Get PDF
    Nonperturbative terms in the free energy of Chern-Simons gauge theory play a key role in its duality to the closed topological string. We show that these terms are reproduced by performing a double scaling limit near the point where the perturbation expansion diverges. This leads to a derivation of closed string theory from this large-N gauge theory along the lines of noncritical string theories. We comment on the possible relevance of this observation to the derivation of superpotentials of asymptotically free gauge theories and its relation to infrared renormalons.Comment: 10 pages, LaTe

    Lattice determination of the critical point of QCD at finite T and \mu

    Get PDF
    Based on universal arguments it is believed that there is a critical point (E) in QCD on the temperature (T) versus chemical potential (\mu) plane, which is of extreme importance for heavy-ion experiments. Using finite size scaling and a recently proposed lattice method to study QCD at finite \mu we determine the location of E in QCD with n_f=2+1 dynamical staggered quarks with semi-realistic masses on Lt=4L_t=4 lattices. Our result is T_E=160 \pm 3.5 MeV and \mu_E= 725 \pm 35 MeV. For the critical temperature at \mu=0 we obtained T_c=172 \pm 3 MeV.Comment: misprints corrected, version to appear in JHE

    Rationale for UV-filtered clover fermions

    Full text link
    We study the contributions Sigma_0 and Sigma_1, proportional to a^0 and a^1, to the fermion self-energy in Wilson's formulation of lattice QCD with UV-filtering in the fermion action. We derive results for m_{crit} and the renormalization factors Z_S, Z_P, Z_V, Z_A to 1-loop order in perturbation theory for several filtering recipes (APE, HYP, EXP, HEX), both with and without a clover term. The perturbative series is much better behaved with filtering, in particular tadpole resummation proves irrelevant. Our non-perturbative data for m_{crit} and Z_A/(Z_m*Z_P) show that the combination of filtering and clover improvement efficiently reduces the amount of chiral symmetry breaking -- we find residual masses am_{res}=O(10^{-2}).Comment: 25 pages, 4 figures; v2: typo in eqn. (37) fixed [agrees with published version

    Implications of the Quark Mass Hierarchy on Flavor Mixings

    Get PDF
    We stress that the observed pattern of flavor mixings can be partly interpreted by the quark mass hierarchy without the assumption of specific quark mass matrices. The quantitatively proper relations between the Kobayashi-Maskawa matrix elements and quark mass ratios, such as VcbVts2(msmbmcmt)[1+3(msmb+mcmt)],|V_{cb}| \approx |V_{ts}| \approx \sqrt{2} (\frac{m_s}{m_b} -\frac{m_c}{m_t}) [1 + 3 (\frac{m_s}{m_b} + \frac{m_c}{m_t} ) ], are obtainable from a simple {\it Ansatz} of flavor permutation symmetry breaking at the weak scale. We prescribe the same {\it Ansatz} at the supersymmetric grand unified theory scale, and find that its all low-energy consequences on flavor mixings and CPCP violation are in good agreement with current experimental data.Comment: Latex 19 pages including 5 PS figure

    Quantum heat transfer through an atomic wire

    Get PDF
    We studied the phononic heat transfer through an atomic dielectric wire with both infinite and finite lengths by using a model Hamiltonian approach. At low temperature under ballistic transport, the thermal conductance contributed by each phonon branch of a uniform and harmonic chain cannot exceed the well-known value which depends linearly on temperature but is material independent. We predict that this ballistic thermal conductance will exhibit stepwise behavior as a function of temperature. By performing numerical calculations on a more realistic system, where a small atomic chain is placed between two reservoirs, we also found resonance modes, which should also lead to the stepwise behavior in the thermal conductance.Comment: 14 pages, 2 separate figure

    Chiral bosonization for non-commutative fields

    Full text link
    A model of chiral bosons on a non-commutative field space is constructed and new generalized bosonization (fermionization) rules for these fields are given. The conformal structure of the theory is characterized by a level of the Kac-Moody algebra equal to (1+θ2)(1+ \theta^2) where θ\theta is the non-commutativity parameter and chiral bosons living in a non-commutative fields space are described by a rational conformal field theory with the central charge of the Virasoro algebra equal to 1. The non-commutative chiral bosons are shown to correspond to a free fermion moving with a speed equal to c=c1+θ2 c^{\prime} = c \sqrt{1+\theta^2} where cc is the speed of light. Lorentz invariance remains intact if cc is rescaled by ccc \to c^{\prime}. The dispersion relation for bosons and fermions, in this case, is given by ω=ck\omega = c^{\prime} | k|.Comment: 16 pages, JHEP style, version published in JHE

    Is Barbero's Hamiltonian formulation a Gauge Theory of Lorentzian Gravity?

    Full text link
    This letter is a critique of Barbero's constrained Hamiltonian formulation of General Relativity on which current work in Loop Quantum Gravity is based. While we do not dispute the correctness of Barbero's formulation of general relativity, we offer some criticisms of an aesthetic nature. We point out that unlike Ashtekar's complex SU(2) connection, Barbero's real SO(3) connection does not admit an interpretation as a space-time gauge field. We show that if one tries to interpret Barbero's real SO(3) connection as a space-time gauge field, the theory is not diffeomorphism invariant. We conclude that Barbero's formulation is not a gauge theory of gravity in the sense that Ashtekar's Hamiltonian formulation is. The advantages of Barbero's real connection formulation have been bought at the price of giving up the description of gravity as a gauge field.Comment: 12 pages, no figures, revised in the light of referee's comments, accepted for publication in Classical and Quantum Gravit
    corecore