206 research outputs found
Transport Stress Changes Blood Biochemistry, Antioxidant Defense System, and Hepatic HSPs mRNA Expressions of Channel Catfish Ictalurus punctatus
Transport procedures usually cause fish stress. The purpose of this study was to investigate the effect of transport stress on blood biochemical profiles, oxidative stress biomarkers, and hepatic heat shock proteins (HSPs) of channel catfish (Ictalurus punctatus). Fish (body weight 55.57 ± 5.13 g) were randomly distributed to two groups, the control, and the treatment. The control group was kept under the normal culture conditions. The treatment group was exposed to the process of transport (3.5 h). Fish samples were collected before transport, after packing and at 0, 1, 6, 24, 72, and 168 h after transport, respectively. Transport caused a significant increase in the serum concentrations of cortisol, glucose, total cholesterol, and triglyceride, as well as, the activity of aspartate aminotransferase at 0 and 1 h after transport compared with non-transported fish and the basal level. Blood total protein content significantly declined in the transported fish. Total antioxidant capacity (T-AOC), malonaldehyde content, and the activities of both glutathione peroxidase and catalase significantly increased in fish within 6 h after transport. The transported fish exhibited a significant higher level in either the concentration of nitric oxide or the mRNA expressions of both hepatic HSP70 and HSP90. It is concluded that transport triggers stress response of I. punctatus, leading to the obvious change in antioxidant capacity. I. punctatus need to be more care after transport to recover from transport stress
Seminavis aegyptiaca sp. Nov., a new amphoroid diatom species from estuary epilithon of the riverânile damietta branch, Egypt
During a recent floristicâtaxonomic study on the algal flora, including diatoms, from the estuary of the Damietta Branch of the Nile in Egypt, an interesting epilithic diatom species belonging to the genus Seminavis (Naviculaceae) was collected and investigated using both light and scanning electron microscopy. This new diatom species shares morphologically some taxonomic diagnostic features with other related taxa such as S. insignis, S. robusta, and S. ventricosa. However, it still differs by having ventral central striae that are shorter and more or less straight in the middle of the smaller frustules to be clearly radiate in the larger ones and then become geniculate and only radiate near the poles, the central raphe endings are externally more distantly spaced than in the similar species, the elongate central nodule is internally less prominent, and the areola density is much denser. Therefore, we here describe it as Seminavis aegyptiaca sp. nov. Hydrochemical analyses revealed that S. aegyptiaca commonly inhabits typical marine, with a weak tendency towards brackish water, habitats. It was found to be tolerant to mesoâeutrophic, nutrientâenriched conditions, based on the data available on seasonal concentrations of N and P compounds. These findings not only contribute to the inventory of Egyptian diatoms, but also increase our understanding of the autecology and distribution of this relatively poorlyâknown diatom genus
Serum interferon-alpha level in first degree relatives of systemic lupus erythematosus patients: Correlation with autoantibodies titers
AbstractBackground and objectivesInterferon-α (IFN-α), a cytokine with both antiviral and immune-regulatory functions, was suggested as a useful tool which can evaluate current systemic lupus erythematosus (SLE) disease activity and identify patients who are at risk of future disease flares. In the current study, serum IFN-α levels and associated demographic, and serological features in Egyptian SLE patients and their first degree relatives (FDRs) in comparison to unrelated healthy controls (UHCs) were examined, in order to identify individuals at the greatest risk for clinical illness.MethodsIn a cross-sectional study, blood samples were drawn from 54 SLE patients, 93 of their FDRs who consented to enroll into the study and 76 UHCs. Measurement of serum IFN-α by a modified ELISA was carried out. Data were analyzed for associations of serum IFN-α levels with autoantibodies titer.ResultsMean serum IFN-α in FDRs was statistically higher than the UHCs and lower than in SLE patients (P<0.0001) and it was correlated with ANA titer (r=0.6, P<0.0001) and anti ds DNA titer (r=0.62, P<0.0001).ConclusionIFN-α is a crucial player in the complicated autoimmune changes that occur in SLE and serum IFN-α can be a useful marker identifying persons who are at risk of future disease development
A polishing the harmful effects of Broad Bean Mottle Virus infecting broad bean plants by enhancing the immunity using different potassium concentrations
Broad bean mottle virus (BBMV) infects a wide range of hosts, resulting in significant production reductions. The lack of adequate and effective control methods involves implementing novel BBMV control strategies. Herein, we demonstrate the effect of different potassium concentrations (20, 40, and 60 mM) against BBMV in broad bean plants. Potassium could control BBMV infection in broad bean by inhibiting the virus. In addition, infection with BBMV caused a significant decrease in morphological criteria, SPDA, photosynthetic characteristics, phytohormones, and mineral content in broad bean leaves compared to control plants. The levels of reactive oxygen species (ROS) (hydrogen peroxide, hydroxyl radical, and oxygen anion) and ROS scavenging enzymes (catalase, superoxide dismutase, peroxidase, phenylaniline ammonia-lyase, chitinase, and 1,3 - glucanase) increased significantly in plants inoculated with BBMV alone or in the presence of K+. In addition, proline and phenolic compounds increased significantly after being infected with BBMV. In conclusion, treatment with a high potassium concentration (60 mM) alleviates the adverse effect of BBMV on broad bean plants by boosting secondary metabolites, phytohormones, and enzymatic antioxidants
Ankyrin-B dysfunction predisposes to arrhythmogenic cardiomyopathy and is amenable to therapy
Arrhythmogenic cardiomyopathy (ACM) is an inherited arrhythmia syndrome characterized by severe structural and electrical cardiac phenotypes, including myocardial fibrofatty replacement and sudden cardiac death. Clinical management of ACM is largely palliative, owing to an absence of therapies that target its underlying pathophysiology, which stems partially from our limited insight into the condition. Following identification of deceased ACM probands possessing ANK2 rare variants and evidence of ankyrin-B loss of function on cardiac tissue analysis, an ANK2 mouse model was found to develop dramatic structural abnormalities reflective of human ACM, including biventricular dilation, reduced ejection fraction, cardiac fibrosis, and premature death. Desmosomal structure and function appeared preserved in diseased human and murine specimens in the presence of markedly abnormal \u3b2-catenin expression and patterning, leading to identification of a previously unknown interaction between ankyrin-B and \u3b2-catenin. A pharmacological activator of the WNT/\u3b2-catenin pathway, SB-216763, successfully prevented and partially reversed the murine ACM phenotypes. Our findings introduce what we believe to be a new pathway for ACM, a role of ankyrin-B in cardiac structure and signaling, a molecular link between ankyrin-B and \u3b2-catenin, and evidence for targeted activation of the WNT/\u3b2-catenin pathway as a potential treatment for this disease
In vitro cytotoxicity of Withania somnifera (L.) roots and fruits on oral squamous cell carcinoma cell lines: a study supported by flow cytometry, spectral, and computational investigations
Oral cancer is a severe health problem that accounts for an alarmingly high number of fatalities worldwide. Withania somnifera (L.) Dunal has been extensively studied against various tumor cell lines from different body organs, rarely from the oral cavity. We thus investigated the cytotoxicity of W. somnifera fruits (W-F) and roots (W-R) hydromethanolic extracts and their chromatographic fractions against oral squamous cell carcinoma (OSCC) cell lines [Ca9-22 (derived from gingiva), HSC-2, HSC-3, and HSC-4 (derived from tongue)] and three normal oral mesenchymal cells [human gingival fibroblast (HGF), human periodontal ligament fibroblast (HPLF), and human pulp cells (HPC)] in comparison to standard drugs. The root polar ethyl acetate (W-R EtOAc) and butanol (W-R BuOH) fractions exhibited the strongest cytotoxicity against the Ca9-22 cell line (CC50 = 51.8 and 40.1Â ÎŒg/mL, respectively), which is relatively the same effect as 5-FU at CC50 = 69.4Â ÎŒM and melphalan at CC50 = 36.3Â ÎŒM on the same cancer cell line. Flow cytometric analysis revealed changes in morphology as well as in the cell cycle profile of the W-R EtOAc and W-R BuOH-treated oral cancer Ca9-22 cells compared to the untreated control. The W-R EtOAc (125Â ÎŒg/mL) exerted morphological changes and induced subG1 accumulation, suggesting apoptotic cell death. A UHPLC MS/MS analysis of the extract enabled the identification of 26 compounds, mainly alkaloids, withanolides, withanosides, and flavonoids. Pharmacophore-based inverse virtual screening proposed that BRD3 and CDK2 are the cancer-relevant targets for the annotated withanolides D (18) and O (12), and the flavonoid kaempferol (11). Molecular modeling studies highlighted the BRD3 and CDK2 as the most probable oncogenic targets of anticancer activity of these molecules. These findings highlight W. somniferaâs potential as an affordable source of therapeutic agents for a range of oral malignancies
Progesterone after previous preterm birth for prevention of neonatal respiratory distress syndrome (PROGRESS): a randomised controlled trial
Background: Neonatal respiratory distress syndrome, as a consequence of preterm birth, is a major cause of early mortality and morbidity during infancy and childhood. Survivors of preterm birth continue to remain at considerable risk of both chronic lung disease and long-term neurological handicap. Progesterone is involved in the maintenance of uterine quiescence through modulation of the calcium-calmodulin-myosin-light-chain-kinase system in smooth muscle cells. The withdrawal of progesterone, either actual or functional is thought to be an antecedent to the onset of labour. While there have been recent reports of progesterone supplementation for women at risk of preterm birth which show promise in this intervention, there is currently insufficient data on clinically important outcomes for both women and infants to enable informed clinical decision-making. The aims of this randomised, double blind, placebo controlled trial are to assess whether the use of vaginal progesterone pessaries in women with a history of previous spontaneous preterm birth will reduce the risk and severity of respiratory distress syndrome, so improving their infant's health, without increasing maternal risks. Methods Design: Multicentred randomised, double blind, placebo-controlled trial. Inclusion Criteria: pregnant women with a live fetus, and a history of prior preterm birth at less than 37 weeks gestation and greater than 20 weeks gestation in the immediately preceding pregnancy, where onset of labour occurred spontaneously, or in association with cervical incompetence, or following preterm prelabour ruptured membranes. Trial Entry & Randomisation: After obtaining written informed consent, eligible women will be randomised between 18 and 23+6 weeks gestation using a central telephone randomisation service. The randomisation schedule prepared by non clinical research staff will use balanced variable blocks, with stratification according to plurality of the pregnancy and centre where planned to give birth. Eligible women will be randomised to either vaginal progesterone or vaginal placebo. Study Medication & Treatment Schedules: Treatment packs will appear identical. Woman, caregivers and research staff will be blinded to treatment allocation. Primary Study Outcome: Neonatal Respiratory Distress Syndrome (defined by incidence and severity). Sample Size: of 984 women to show a 40% reduction in respiratory distress syndrome from 15% to 9% (p = 0.05, 80% power). Discussion: This is a protocol for a randomised trial.Jodie M. Dodd, Caroline A. Crowther, Andrew J. McPhee, Vicki Flenady, and Jeffrey S. Robinso
- âŠ