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Abstract

Background: Anoctamin 5 (ANO5) is a member of a conserved gene family (TMEM16), which codes for proteins
predicted to have eight transmembrane domains and putative Ca2+-activated chloride channel (CaCC) activity. It
was recently reported that mutations in this gene result in the development of limb girdle muscular dystrophy type
2L (LGMD2L), Miyoshi myopathy type 3 (MMD3), or gnathodiaphyseal dysplasia 1 (GDD1). Currently, there is a lack
of animal models for the study of the physiological function of Ano5 and the disease pathology in its absence.

Results: Here, we report the generation and characterization of the first Ano5-knockout (KO) mice. Our data
demonstrate that the KO mice did not present overt skeletal or cardiac muscle pathology at rest conditions from
birth up to 18 months of age. There were no significant differences in force production or force deficit following
repeated eccentric contractions between wild type (WT) and KO mice. Although cardiac hypertrophy developed
similarly in both KO and WT mice after daily isoproterenol (ISO, 100 mg/kg) treatment via intraperitoneal injection
for 2 weeks, they were functionally indiscernible. However, microarray analysis identified the genes involved in lipid
metabolism, and complement pathways were altered in the KO skeletal muscle.

Conclusions: Taken together, these data provide the evidence to show that genetic ablation of Ano5 in C57BL/6J
mice does not cause overt pathology in skeletal and cardiac muscles, but Ano5 deficiency may lead to altered lipid
metabolism and inflammation signaling.
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Background
The TMEM16 family of membrane proteins, also known as
anoctamins, plays crucial roles in a variety of physiological
processes including ion transport, phospholipid scrambling,
as well as regulating other ion channels. Members of this
family share common structural characteristics including
eight transmembrane domains, a re-entrant loop between
the fifth and sixth transmembrane domains forming the
channel pore [1], and a unique sequence motif called the
annotated domain of unknown function 590 (DUF590) [2,
3]. Among this family, ANO1 and ANO2 have been shown

to be involved in numerous diverse functions such as noci-
ception, epithelial secretion, smooth muscle contraction,
host defense, cell proliferation, and tumorigenesis [4–9],
mediated by the Ca2+-activated Cl− channel (CaCC) activity
of these proteins [1, 10, 11]. Recently, it was shown that
some but not all anoctamins possess CaCC activities [12].
In particular, the lack of CaCC activity for ANO3 to ANO7,
is likely due to their intracellular localization [13]. Interest-
ingly, Ano6 was found to be a CaCC [14] and a Ca2+-acti-
vated cation channel required for Ca2+-dependent
phospholipid scrambling during blood coagulation [15],
suggesting that different members of this family may have
evolved to have different functional properties.
In 2007, it was reported in adult mouse that Ano5 is

highly expressed in skeletal muscle, cardiac muscle, and
bone cells [16]. ANO5 was the first member of this gene
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family reported to be associated with human diseases.
Mutations in ANO5 have been associated with gnathodia-
physial dysplasia 1(GDD1), a rare skeletal syndrome charac-
terized by bone fragility and bony lesions of the jaw bone
with autosomal dominant inheritance patterns [16–18].
Interestingly, genetic defects in ANO5 were also identified
to be responsible for two types of autosomal recessive
muscular dystrophies—limb girdle muscular dystrophy type
2L (LGMD2L) and Miyoshi myopathy type 3 (MMD3) with
characteristics that resemble dysferlinopathies [19–25].
Cardiac involvement was also reported to be associated with
some ANO5-deficient patients [26–28]. Despite the clear
links of ANO5 deficiency to these genetic diseases in pa-
tients, there is currently no animal model with ANO5 defi-
ciency. Moreover, the cellular functions of ANO5 in skeletal
muscle and cardiac muscles remain to be determined.
Therefore, we sought to determine the function of ANO5 in
these tissues by characterizing for the first time an Ano5
knockout mouse. Our data demonstrates that complete dis-
ruption of Ano5 expression in mice does not recapitulate the
ANO5-deficient muscular dystrophy seen in human patients.

Methods
The Ano5 knockout mice
All animal studies were reviewed and approved by the
Institutional Animal Care and Use Committee (IACUC)
of the Ohio State University. Male C57BL/6J mice were
purchased from The Jackson Laboratory (Bar Harbor,
ME, USA). Ano5 knockout mice (C57BL/6-Ano5 <
tm1Itak>) were obtained from RIKEN BioResource
Center, Japan, and maintained in our barrier facility. The
knockout (KO) genomic DNA was PCR amplified with a
forward primer located in the upstream of the first exon
of Ano5 (5′-GGGTGTTTCTGGAAGGGTGTTGT) and
a reverse primer located in neomycin (5′-GTTGGCT
ACCCGTGATATTGCTG), or a forward primer located
in neomycin (5′-GGCAGGAGCAAGGTGAGATGAC),
and a reverse primer located in the intron of Ano5 (5′-
GATCGCCACCTGTGCAGGCTATC), and the resulting
750 bp-product and 1100 bp-product were sequenced to
define the insertion junctions. In this strain, the first exon
and its upstream 1.6 kb of the Ano5 gene was replaced
with a neomycin selection cassette in the opposite orienta-
tion. The mice were backcrossed with C57BL/6J for six
generations before breeding to homozygous status for the
experiments. Identification of the mutant mice was per-
formed by PCR genotyping of genomic DNA prepared
from ear clips with the primers listed in Additional file 1:
Table S1. The WT and KO allele would produce a 466-bp
and 1200-bp band, respectively.

RNA isolation, RT-PCR, and qRT-PCR
Total RNA extraction, reverse transcription, and PCR or
quantitative PCR (qPCR) were performed as previously

described [29]. In brief, total RNA was extracted from
mouse tissues by using TRIzol reagent (Life Technologies,
Carlsbad, CA). Total RNA was pre-treated with an DNase
Ι and 5 μg of treated RNA was used as template for first-
strand complementary DNA (cDNA) synthesis by using
RevertAid RT Reverse Transcription Kit (Life Technolo-
gies, Carlsbad, CA). Aliquots of the RT products (50 ng)
were used for regular and quantitative RT-PCR. Quantita-
tive RT-PCR (qPCR) was performed using Radiant™ SYBR
Green Hi-ROX qPCR Kits (Alkali Scientific, Pompano
Beach, FL) in StepOnePlus™ Real-Time PCR Systems (Life
Technologies, Carlsbad, CA) and normalized to glyceral-
dehyde 3-phosphate dehydrogenase (Gapdh). Regular RT-
PCR was performed using GoTaq® Green Master (Pro-
mega, Madison, WI). The primers used in this study are
listed in Additional file 1: Table S1.

Measurement of contractile properties
The extensor digitorum longus (EDL) muscles were iso-
lated and mounted as previously described [30]. Con-
tractility assays were done at 30 °C. The optimal length
of the muscle was determined using twitch contractions
(single 4 ms stimulus) while stretching the muscle until
maximum force was achieved. Following a 10-min rest
period, the muscle underwent a single tetanic contrac-
tion (150 Hz for 250 ms). After a 5-min rest period, an
eccentric contraction protocol was performed consisting
of 10 tetanic contractions (150 Hz for 450 ms with a
stretch equal to 3 % of optimal length for the final
200 ms) with 2 min of rest between stimulations.
Twenty minutes after the tenth eccentric contraction, an
11th eccentric contraction was performed. The sutures
were then removed, and the muscle was dried by placing
it between a folded Kimwipe and placing a 10-g weight
on top for 10 s, where after the muscle was weighed.
Contractile forces are reported per unit of cross-
sectional area (CSA).

Histological analysis of frozen tissue sections
The gastrocnemius, quadriceps muscles, and heart were
removed and embedded in optimal cutting temperature
(OCT) compound, flash frozen using isopentane chilled
in liquid nitrogen and kept at −80 °C until used. Cryo-
sections were prepared using a cryostat Leica CM3050S.
For hematoxylin and eosin (H&E) and Masson’s tri-
chrome staining, transversely oriented sections (10 μm)
were cut at mid-point and stained as previously de-
scribed [31–34]. The samples were digitally imaged
using a Nikon Ti-E inverted fluorescence microscope
equipped with a Lumenera Infinity Color CCD camera,
and a Nikon Super Fluor 20x 0.75 NA objective lens
(Nikon Inc., Melville, NY, USA). The digital images were
processed using the ImageJ software (NIH). The amount
of fibrotic area was compared with the total area of the
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tissue section, and the results were expressed as a per-
centage of fibrotic area for each group.

Immunohistochemistry
For immunofluorescence staining, 10-μm frozen sections
were fixed with 4 % paraformaldehyde for 15 min at
room temperature. The samples were then washed twice
with phosphate-buffered saline (PBS) and incubated with
blocking solution (PBS, 2 % BSA, 0.5 % Triton X-100,
0.1 % Tween 20, 10 % goat serum) for 1 hour before
overnight incubation at 4 °C with primary antibodies
(monoclonal anti-caveolin-3 antibody, C38320, BD
Transduction Laboratories, 1:500; rabbit polyclonal anti-
dystrophin antibody, Ab15277, Abcam, 1:200; rabbit
polyclonal anti-nNOS protein antiserum H-299, Santa
Cruz, 1:200; mouse monoclonal anti-dysferlin antibody,
clone Ham1/7B6, Novocastra, 1:200). The slides were
then extensively washed with PBS and incubated with
secondary antibodies [Alexa Fluor 555 goat anti-mouse
IgG (Invitrogen 1:200) or Alexa Fluor 594 goat anti-
rabbit IgG (Invitrogen 1:200)] for 1 hour at room
temperature. Finally, the glass slides were mounted using
VECTASHIELD® Mounting Medium with 4' ,6-diami-
dino-2-phenylindole (DAPI) (Vector Laboratories, Inc.).
Slides were analyzed using a Nikon Ti-E inverted fluor-
escence microscope equipped with an Andor Zyla
sCMOS camera, a Nikon Super Fluor 20x 0.75 NA ob-
jective lens. Images were recorded using NIS-Elements
Advanced Research software package (Nikon) and proc-
essed using Photoshop CS5 (Adobe) software package.

Central nucleation counting
Cryosections of the gastrocnemius and quadriceps mus-
cles were stained with anti-caveolin-3 antibody to delin-
eate muscle fibers, and VECTASHIELD® Mounting
Medium with DAPI was used for nuclear staining. All fi-
bers, except those in direct contact with fascia, were an-
alyzed for the location of their nuclei. For each sample
group, the number of fibers with centrally localized nu-
clei relative to the total number of fibers was recorded.
For each individual mouse, about 2500–3500 fibers were
counted [33].

Cardiotoxin-induced injury
To assess the regenerative ability after muscle damage,
we induced acute muscle damage by cardiotoxin (CTX)
injection (50 μl of 10 μM in sterile PBS) to the gastro-
cnemius muscle of Ano5 KO mice [35]. The contralat-
eral muscle was used as control. After 7, 14, and
21 days, the mice were sacrificed, and the muscles were
dissected for histopathologic examination.

Isoproterenol challenge and echocardiography recording
Ano5 KO and WT mice were treated daily with intraper-
itoneal injections (I.P.) of 100 mg/kg isoproterenol
(Sigma) for 14 days [36], and a control group was
injected with an equal volume of saline. We took echo-
cardiographic measurements before and after iso-
proterenol injections to assess the cardiac functions.
Mice were anesthetized by isoflurane (1 %) inhalation,
and echocardiographic measurements were performed
with the high-resolution echocardiography analysis sys-
tem for small animals (Vevo 2100TM imaging system,
Visual sonics). A two-dimensional short-axis view and
M-mode tracings of the left ventricle were obtained with
a 30 MHz transducer. Measurements were averaged over
three consecutive beats from the LV posterior wall
(LVPW), the interventricular septum (IVS), and the LV
internal diameter (LVID). Fractional shortening (FS) was
used to estimate systolic function and was computed ac-
cording to the formula FS = (LVIDd − LVIDs) / LVIDd ×
100 and LV mass = 1.05 × [(LVd + IVS + PW)3 − (LVd)3],
where d is diastole and s is systole.

RNA isolation for microarray analysis
RNA was extracted by TRIzol following the manufac-
turer’s instructions from the gastrocnemius muscles of
WT and KO mice. After RNA purification by using
Quick RNA-miniPrep kit (Zymo Research, Irvine, CA),
all quantitation and microarray experiments were per-
formed at the Ohio State University Genomics Shared
Resource. RNA integrity was interrogated using the Agi-
lent 2100 Bioanalyzer (Agilent Technologies, Palo Alto,
CA). A 100-ng aliquot of total RNA was linearly ampli-
fied. Then, 5.5 μg of cDNA was labeled and fragmented
using the GeneChip® WT PLUS reagent kit (Affymetrix,
Santa Clara, CA) following the manufacturer’s instruc-
tions. Labeled cDNA targets were hybridized to Affyme-
trix GeneChip® Mouse Transcriptome Array 1.0 for
16 hours at 45 °C rotating at 60 rpm. The arrays were
washed and stained using the Fluidics Station 450 and
scanned using the GeneChip Scanner 3000. For gene ex-
pression analysis, arrays were normalized using RMA-
SST algorithm in Expression Console, and comparisons
were made in Transcriptome Analysis Console (Affyme-
trix, Santa Clara, CA). Ingenuity pathway analysis (IPA)
was used to translate the possible biological relevance of
gene expression changes established (Ingenuity Systems,
http://www.ingenuity.com website; Redwood City, CA,
USA). Gene sets established by analysis of mRNA expres-
sion (significant expression changes) were subjected to
IPA and significant pathways (p < 0.05) were compared
with each other. Analysis settings for IPA used the refer-
ence set of Ingenuity Knowledge Base (Genes Only) with
both direct and indirect relationships included. The top
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canonical pathways from both up- and downregulated
genes were assessed for WTand KO mice.

Western blotting
Gastrocnemius muscles from WT and Ano5 KO mice
were lysed with cold RIPA buffer supplemented with
protease inhibitors, and extracted protein samples were
separated by SDS-PAGE (BioRad, 4–20 %) and trans-
ferred onto PVDF membranes (0.45 μm). Primary anti-
bodies include the rabbit polyclonal anti-dystrophin
(E2660, 1:500, Spring Bioscience, Pleasanton, CA),
anti-nNOS (H-299,1:3000, SantaCruz Biotechnology,
SantaCruz, CA, USA), anti-ANO1 antibody (53213,
1:1, Abcam, Cambridge, MA), mouse monoclonal anti-
dysferlin antibody (NCL-Hamlet, Ham1/7B6,1:500,
Novocastra, Newcastle, UK), anti-ANO6 antibody (N429/
19, 1:40, UC Davis/NIH NeuroMab Facility, UC Davis,
USA), and anti-Gapdh (MAB374, 1:2500, Millipore,
Billerica, MA). Secondary antibodies were HRP-conjugated
rabbit anti-mouse (1:3000, and goat anti-rabbit secondary
antibodies (1:3000) (Millipore, Billerica, MA). The mem-
branes were developed using ECL Western blotting sub-
strate (Pierce Biotechnology, Rockford, IL) and exposed to
film (Kodak, Rochester).
Statistical analysis—Data are expressed as mean ±

standard deviation (SD). Statistical differences were de-
termined by unpaired Student’s t test for two groups and
one-way ANOVA with Bonferroni’s post tests for mul-
tiple group comparisons using Prism 5.02 (Graphpad
Software, La Jolla, California). A p value less than 0.05
was considered to be significant.

Results
Expression of Ano5 in different mouse tissues
We first examined the expression of Ano5 in various
mouse tissues including skeletal muscle and heart by
quantitative RT-PCR. Ano5 was found to be highly
expressed in the bone, skeletal muscle and testis, moder-
ately in the lung and aorta, mildly in the heart, and low
in the kidney, stomach, liver, colon, and brain (Fig. 1a).
In addition, we examined the expression of various
anoctamin genes in mouse skeletal muscle and heart. As
shown in Fig. 1b, Ano5, 6, and 8 were expressed rela-
tively high in skeletal muscle, followed by Ano1, 4, and
10, while Ano2, 3, 7, and 9 were hardly detectable. In
mouse heart, Ano1, 4, 5, 6, and 8 were expressed rela-
tively high, followed by Ano3 and 9, while Ano2 and
Ano7 bands were only faintly visible (Fig. 1c).

Generation of the Ano5 knockout mice
To disrupt the expression of Ano5 in mice, the first exon
of Ano5 and its upstream about 1.6 kb were replaced
with a neomycin resistance cassette in the opposite
orientation (Fig. 2a). Genotyping PCR analysis revealed

the presence of the KO allele in the heterozygous and
homozygous mutant mice as expected (Fig. 2b). The
WT allele was not detected in the homozygous mutant
mice (Fig. 2b). Breeding the heterozygous male and
female mice yielded the expected ~1:2:1 ratio of three ge-
notypes (WT, heterozygous, and homozygous KO). Due
to the unavailability of a well-characterized Ano5 anti-
body, we employed RT-PCR to examine whether replace-
ment of the first exon and its upstream region with the
neomycin cassette disrupted the expression of Ano5 in the
skeletal muscle of mice. Five different primer sets faith-
fully amplified different regions along the Ano5 transcripts
(including different alternatively spliced variants) from the
WT skeletal muscle, but there were no PCR products
from the KO skeletal muscle (Fig. 2c). We have tested sev-
eral commercial anti-Ano5 antibodies, but unfortunately,
they did not work to detect Ano5 by Western blotting
(Additional file 2: Figure S1). However, our RT-PCR data
convincingly demonstrate that the KO mice completely
lack Ano5 expression and thus are suitable for studying
the physiological consequence of Ano5 deficiency.

Normal contractile responses in Ano5-KO muscles
Two important features of muscular dystrophy are that
the muscle produces reduced force and it is more suscep-
tible to lengthening-contraction-induced (LC-induced)
damage. We thus examined the effect of Ano5 knock-
out on force production and force deficit in response
to LC-induced muscle injury by measuring the ex vivo
contractile properties of the extensor digitorum longus
(EDL) muscles [37]. WT and KO muscles showed no
statistically significant differences in maximal force when
subjected to twitch contractions (67.7 ± 6.7 mN/mm2,
n = 6 and 75.1 ± 14.1 mN/mm2, n = 7 for KO and WT, re-
spectively; p = 0.66) (Fig. 3a) or tetanic contraction at
150 Hz (345.7 ± 36.8 mN/mm2, n = 6 and 374.8 ± 42.5 mN/
mm2, n = 7 for KO and WT, respectively; p = 0.62) (Fig. 3b).
The EDL muscle was then subjected to a train of 10
lengthening contractions with 2 min of rest between
stimulations (see “Methods” section for details), and
the force deficit in the KO EDL muscle was indistinguish-
able from that in the WT control at 4 months of age
(Fig. 3c). In summary, the contractile properties of the
Ano5 KO muscles were not significantly different from
the WT muscles.

No overt muscle pathology in the KO mice
Recessive mutations in ANO5 have been shown to cause
LGMD2L and MMD3 in a wide range of clinical patients
[25]. In order to study the effect of ANO5 deficiency on
skeletal muscle, we sought to examine the Ano5 KO
mice for any signs of muscular dystrophy. Our initial
gross and histological examination of the young KO
mice did not reveal any obvious pathology as compared
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to their WT littermate controls (data not shown). We fur-
ther analyzed the mice at older ages (8 and 18 months) by
histopathological analysis. The muscle mass normalized to
body weight of both the tibialis anterior and gastrocne-
mius muscles were not significantly changed in the KO
mice as compared to their WT littermates (Fig. 4a). H&E
staining of muscle sections showed no major histopatho-
logical alterations in the gastrocnemius and quadriceps
muscles of the KO mice compared with their age-
matched WT littermates (Fig. 4b and Additional file 3:
Figure S2). There was no increase in fibrosis in the KO
muscles as studied with the Masson’s trichrome staining
(Additional file 4: Figure S3). Analysis of myofiber central
nucleation by co-labeling the muscle fibers with caveolin-
3 and DAPI (Fig. 4c) showed a small age-related increase

in the quadriceps muscles at 18 months of age in both
WT and KO mice. However, no significant changes be-
tween these two groups were identified (Fig. 4c, d). Fur-
thermore, no changes in regenerative ability were noted
between WT and KO at 7, 14, and 21 days after an acute
injury with cardiotoxin (Additional file 5: Figure S4). Our
data suggest that disruption of Ano5 expression in mice
does not cause overt muscle histopathology up to
18 months of age under resting conditions.

Intact DGC and dysferlin in the absence of Ano5
Disruption of membrane stability due to the loss of
dystrophin-glycoprotein complex (DGC) or membrane
repair capacity due to the defect in dysferlin has been
widely reported to be responsible for various types of

Fig. 1 Expression of Ano5 in different mouse tissues and expression of different anoctamins in mouse skeletal muscle and heart. a Expression of Ano5
in different mouse tissues examined by quantitative RT-PCR. SkM (Dia), skeletal muscle (diaphragm); SkM (TA), skeletal muscle (tibialis anterior). Four
mice of each group were used. b, c Expression of different anoctamin genes in the skeletal muscle (b) and heart (c) by regular RT-PCR. These data are
representative of at least four samples
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muscular dystrophies [34, 38, 39]. To examine whether
Ano5 deficiency may alter the expression and/or
localization of DGC and dysferlin, we performed im-
munofluorescence staining and Western blotting ana-
lyses on the skeletal muscles from WT and KO mice.
The DGC components such as dystrophin and nNOS
and membrane repair protein dysferlin were all normally
expressed and localized at the sarcolemma of the Ano5-
KO skeletal muscle (Fig. 5a-c).

Normal cardiac function in Ano5 KO mice
Previous studies reported the expression of ANO5 in
both skeletal and cardiac tissues in humans [17]. Re-
cent studies on the cardiac conduit system in ANO5
mutant patients also suggested an increased risk of
ventricular arrhythmia [26, 40]. We therefore com-
pared the heart function of the Ano5 KO mice and
their WT littermates under resting conditions or with
isoproterenol (ISO)-induced left ventricular hyper-
trophy at 18 months of age. Our data showed no sig-
nificant differences in the echocardiography images
(Fig. 6a), histology (Fig. 6b), heart/body weight ratio
(Fig. 6c), the cell size of the left ventricle (Fig. 6b, d),
or fibrosis (Additional file 6: Figure S5) between the

KO and WT groups at baseline. The cardiac functions
(fractional shortening and ejection fraction) as mea-
sured by echocardiography were also normal in the
KO mice (Fig. 6e, f ).
To further test if ISO-induced cardiac stress can un-

mask any cardiac defect in the Ano5 KO mice, we
studied the cardiac function by echocardiography in the
mice treated with daily ISO (100 mg/kg, I.P.) injections
for 14 days. Both Ano5 KO and WT hearts developed
significant left ventricular dilation after ISO injections
(Fig. 6a and Additional file 7: Table S2). However, no
differences were discernible in the thickness of the inter-
ventricular septum between Ano5 KO and WT groups
over the course of the experiments (Additional file 7:
Table S2). The percentage increase in myocyte trans-
verse cross-sectional area showed no significant differ-
ences between the KO and WT mice (Fig. 6c, d). By
2 weeks, neither fractional shortening (WT, 47.54 ±
1.81 %, n = 5; Ano5 KO, 46.51 ± 3.60 %, n = 5; p = 0.84)
nor ejection fraction (WT, 78.79 ± 1.86 %, n = 5; Ano5
KO, 77.08 ± 4.04 %, n = 5; p = 0.77) was significantly dif-
ferent between these two groups.

Fig. 3 Measurement of the contractile properties in the EDL muscles.
Specific force production of both twitch (a) and tetanic contractions at
150Hz for 250 ms (b) was not different between WT and KO muscles. c
Tetanic force declines with repeated eccentric contractions. Contractile
forces are reported per unit of cross-sectional area (CSA). N of mice = 6
and 7 for KO and WT at 4 months of age. ns, no statistical significance

Fig. 2 Generation of Ano5 KO mice. a Schematic representation of
WT and KO alleles of mouse Ano5. A neomycin cassette was inserted
in the exon 1 of mouse Ano5. b Genotyping of the WT, KO, and
heterozygous (Het) mice. c RT-PCR analysis of the skeletal muscles from
WT and KO mice (four in each group) using four different primer sets.
Gapdh was used as a reference gene
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Fig. 4 Characterization of the muscular phenotype in the Ano5 KO mice. a Tibialis anterior (TA) and quadriceps (Qu) muscle mass (MM) normalized
to body weight (BW) from the indicated genotypes of mice. b H&E-stained cryosections of the gastrocnemius (GA) and quadriceps (Qu) from
18-month-old mice of the indicated genotypes. Scale bar= 50 μm. c Representative immunofluorescence images for caveolin-3 (green) and nuclei
(DAPI, blue) staining in gastrocnemius and quadriceps sections from 18-month-old WT and KO mice. Scale bar = 100 μm. d Percentage of myofibers
with centrally located nuclei from the gastrocnemius and quadriceps muscles of WT and KO mice at 18 months of age. ns, no statistical significance.
N of mice: 6–8 for each group
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Analysis of other anoctamin genes in Ano5 KO mice
There are a total of ten members of the anoctamin
family with some overlapping expression in each tis-
sue such as skeletal muscle (Fig. 1b). To test whether
the lack of muscular dystrophy phenotype in the
Ano5 KO mice might be due to the upregulation of
other anoctamin genes, we compared the expression
of all nine other anoctamin genes in skeletal muscle
between WT and KO mice by quantitative RT-PCR.
Strikingly, none of these genes showed significant
changes between these two genotypes (Fig. 7a). These
data suggest that transcriptional upregulation of other
anoctamins is not responsible for the lack of pheno-
typic manifestations in Ano5 KO mice. To further test
whether the expression of some anoctamins at the
protein level is altered in Ano5 KO skeletal muscle,
we performed Western blotting analysis and our data
showed that there was no significant difference in
Ano1 and Ano6 protein expression between WT and
KO skeletal muscles (Fig. 7b, c).

Microarray analysis
To determine the general picture of gene expression al-
terations in Ano5 KO skeletal muscles, we performed
microarray analysis of the total RNAs of the gastrocne-
mius muscles from WT and KO mice (n = 3 per geno-
type). Consistent with the RT-PCR results (Fig. 2c),
microarray analysis showed that Ano5 is the most down-
regulated gene (with an over 96-fold change) (Table 1),
further, confirming our Ano5 KO mice is truly deficient
in the expression of Ano5. Transcripts that were calcu-
lated to have log2 ratio intensity between KO and WT
muscles greater than 0.8 or lower than −0.8 were recog-
nized as upregulated and downregulated, respectively. A
total number of 65,956 genes were screened, among
which, 81 genes were upregulated (Additional file 8:
Table S3) and 893 genes downregulated (Additional
file 9: Table S4). Specifically, albumin (Alb), resistin
(Retn), and stearoyl-CoA desaturase (Scd), key enzymes in
fatty acid metabolism, were all downregulated in KO mus-
cles by more than 30-, 27-, and 22-fold, respectively.

Fig. 5 The expression of DGC and dysferlin in Ano5 KO mice. a Representative immunofluorescence images for Dysferlin, Dystrophin and nNOS
staining in gastrocnemius sections from 18-month-old WT mice and Ano5 KO mice. b, c Representative images and quantification of DGC and dysferlin
expression by Western blotting from the gastrocnemius of 18-month-old WT mice and Ano5 KO mice. Dys, Dystrophin; Dysf, Dysferlin; nNOS, neuronal
nitric oxide synthase. Scale bar = 100 μm. ∗∗∗p < 0.01 versus WT controls. ns, no statistical significance. The number of mice is 6–8 for each group
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Moreover, Complement factor D (Cfd) was more than 10-
fold downregulated, and haptoglobin (Hp) and transferrin
(Tf) were also downregulated by more than 11- and 9-
fold. Key upregulated molecules were Kelch-like protein
33 (Klhl33) and peptidase M20 domain-containing protein
2 (Pm20d2) that is an important molecule in metabolism.
Coenzyme Q5 (Coq5), branched chain ketoacid dehydro-
genase kinase, and nitric oxide synthase 1 (Nos1) were all
upregulated (Table 1).
Ingenuity pathway analyses (IPA) performed on

gene expression array data from muscles of WT and
KO mice showed general changes in lipid metabolism
and adiposity pathways. In particular, expression of
Alb, Hp, Tf, Cfd, Retn, and Nos1 genes in the high-
density lipoprotein (HDL) synthesis pathway (Fig. 8a)
was significantly altered in the Ano5 KO muscle.
Moreover, top canonical pathways suggested by IPA
include lipid X receptor and retinoid X receptor
(LXR/RXR) and farnesoid X receptor and retinoid X
receptor (FXR/RXR) activation pathways (Fig. 8b).
The LXR/RXR activation pathway is involved in the
regulation of lipid metabolism, inflammation, and
cholesterol [41]. The FXR/RXR activation pathway
plays a crucial role in lipoprotein, lipid, and glucose
metabolism and has emerged as a general key player
in the control of numerous metabolic pathways [42].
Moreover, the complement system was also signifi-
cantly affected in the KO skeletal muscles. In sum-
mary, microarray data and IPA analyses suggest
changes in metabolic and complement pathways in
Ano5 KO skeletal muscles.

Discussion
ANO5 is highly expressed in human skeletal muscle, car-
diac muscle, chondrocytes, and osteoblasts [16], and it was
the first member of the anoctamin family reported to be
associated with human diseases. Genetic defects in ANO5
were identified to be responsible for two types of auto-
somal recessive muscular dystrophies [19, 20, 25, 26, 40].
Furthermore, cardiac involvement was also reported in as-
sociation with some ANO5-deficient patients [26, 28]. All
these clinical studies support an essential role of
ANO5 in the human musculoskeletal and cardiac sys-
tems. However, our present work using a reverse gen-
etic approach demonstrates that Ano5 is dispensable
in the striated muscles of mice, despite the high ex-
pression of Ano5 in the mouse skeletal muscles. The
Ano5 KO allele lacks the first exon of Ano5 and its
upstream region of about 1.6 kb, within which the
promoter of the Ano5 gene is likely located. Consist-
ently, the Ano5 transcripts were completely gone in
the Ano5 KO mice, indicating these are authentic
Ano5 KO mice.
The Ano5 KO mice did not display any obvious signs

of muscular dystrophy as examined by various estab-
lished methods. The muscle mass was not affected at 8
and 18 months in the absence of Ano5. The musculature
was essentially indistinguishable between the KO and
WT mice. Analysis of myofiber central nucleation
showed a small, non-statistical increase in the quadri-
ceps muscles up to 18 months of age in both WT and
KO mice. Disruption of the membrane stability or the
membrane repair capacity has been widely reported to

Fig. 6 Normal cardiac phenotype in 18-month-old Ano5 KO mice after I.P. injection of 100 mg/kg ISO for 14 days. a Representative serial M-mode
echocardiography in WT and Ano5 KO mice measured before and 14 days after ISO treatment. b H&E-stained cross sections of WT and Ano5 KO
mice hearts subjected to PBS or ISO for 2 weeks. c The ratio of heart/body weight in WT and Ano5 KO mice measured before and 14 days after
ISO treatment. d Quantification of mean cross-sectional area of cardiomyocyte from WT and Ano5 KO mice. (e, f) Graph representing the mean
fractional shortening (FS) and ejection fraction (EF) as measured by M-mode echocardiography in WT and Ano5 KO mice before and 14 days after
ISO treatment. Scale bar = 20 μm. ∗p < 0.05 versus WT controls. ns, no statistical significance. The number of mice is 5–8 for each group
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be responsible for various types of muscular dystrophies
[34, 38, 39]. However, the expression and localization of
DGC components and dysferlin were unaltered in the
KO mice. Moreover, no changes in regenerative ability
were noted between WT and KO mice after an acute in-
jury with cardiotoxin. In addition, the KO mice showed
normal cardiac phenotype when compared to WT con-
trols with no major differences in the thickness of the
interventricular septum or cardiac functions. Following
ISO challenge for 2 weeks, both KO and WT hearts de-
veloped left ventricular dilation similarly without signifi-
cant difference between the two groups.
The lack of muscular dystrophy phenotype in our Ano5

KO mice is in sharp contrast to what has been reported in
clinical studies. These results may cast uncertainty on the
pathogenic role of human ANO5 mutations in muscular
dystrophy. However, this is less likely for the following
reasons. First, ANO5 was shown to be highly expressed in
human skeletal and cardiac tissues [16]. Second, genetic
mapping studies linked the ANO5 region to be responsible
for LGMD2L and MMD3 patients, and mutations in
ANO5 were also found in some of these patients [25, 43].

Third, muscular dystrophy with mutations in ANO5
appears to be one of the most common adult muscular
dystrophies in Northern Europe [19, 40]. Fourth, the
pathogenicity of the ANO5 mutations is supported by
their recurrence in multiple unrelated patients and their
segregation in affected family members [40].
The difference in mutation types might cause different

phenotypic consequences. Previous clinical studies re-
ported various mutation types including missense, frame-
shift, splice site, and nonsense mutations of ANO5 in the
LGMD2L and MMD3 patients [19, 25, 40]. Such muta-
tions may result in the expression of truncated or mutated
versions of ANO5, which could be pathogenic. However,
our study employed complete disruption of Ano5 tran-
scription via insertion of a neomycin cassette into the first
exon of Ano5. These KO mice would be spared from such
pathogenic peptides and thus little phenotype would be
presented. However, this possibility is low because the het-
erozygous parents of the ANO5-mutant patients were not
reported to have the disease. Interestingly, dominant mu-
tations of ANO5 were reported to cause GDD1 in humans
[17], but so far, only recessive mutations in ANO5 were

Fig. 7 a Expression of different anoctamin genes in WT and KO skeletal muscles by quantitative RT-PCR. Four mice at 18 months of age in each
group were used. Note: Ano7 was not detectable in mouse skeletal muscle. b, c Representative images and quantification of Ano1 and Ano6
expression by Western blotting from the gastrocnemius of 18-month-old WT mice and Ano5 KO mice. Four mice in each group were used
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reported to cause muscular dystrophy. It is unclear
whether the GDD1 patients display the muscular dys-
trophy phenotype or vice versa.
A more plausible explanation for the different results of

Ano5 deficiency between our study and the clinical find-
ings is the species difference. It is crucial to note the possi-
bility that any given response in a mouse may not occur in
exactly the same pattern in humans [44], as many changes
need to accumulate before being expressed and mice are
much smaller and live significantly shorter than humans.
Moreover, mice are different from humans in various as-
pects such as immunity [44], metabolism [45], and genet-
ics [46], and living environment. Therefore, it is possible
that other factors (e.g., genetic, environmental, metabolic,
and/or immunological), which are most likely present in
humans but not (or to a lesser extent) in mice, are in-
volved in the pathogenic role of ANO5 mutation. It is also
possible that additional factors, which are most likely
present in mice but not (or to a lesser extent) in humans,
play a protective or compensatory role to prevent the
pathogenic consequence of Ano5 deficiency. It has previ-
ously been noticed that the differences in the compensa-
tory pathways between mice and humans can lead to
different phenotype severity of muscular dystrophy be-
tween these two species. For example, utrophin is well
known to compensate for the loss of dystrophin in mice

Table 1 Top upregulated and downregulated genes in Ano5
KO skeletal muscles by microarray analysis

Gene Full name Fold
change

Klhl33 Kelch-like protein 33 ↑ 4.440

Pm20d2 Peptidase M20 domain-containing protein 2 ↑ 3.260

Ube3b Ubiquitin protein ligase E3B ↑ 2.980

Dennd4b DENN domain-containing protein 4B ↑ 2.870

C10orf71 Chromosome 10 open reading
frame 71

↑ 2.660

Coq5 Coenzyme Q5 ↑ 2.570

Bckdk Branched chain ketoacid dehydrogenase kinase ↑ 2.440

Nos1 Nitric oxide synthase 1 ↑ 2.410

Rapsn Receptor-associated protein of the synapse ↑ 2.410

Sim2 Single-minded family BHLH transcription factor 2 ↑ 2.410

Ano5 Anoctamin 5 ↓−96.640

Alb Albumin ↓−30.130

Retn Resistin ↓−27.420

Scd Stearoyl-coA desaturase ↓−22.820

Cdo1 Cysteine dioxygenase type 1 ↓−15.030

Hp Haptoglobin ↓−11.890

Cfd Complement factor D ↓−11.520

Tf Transferrin ↓−9.990

Fig. 8 Ingenuity pathway analysis (IPA) of the microarray data from the gastrocnemius muscles from WT and KO mice. a Genes involved in the
high-density lipoprotein synthesis pathway were altered in Ano5 KO skeletal muscles. Light green: downregulated; Red: upregulated. b Top
canonical pathways suggested by IPA showed lipid metabolism and complement pathways are altered in Ano5 KO skeletal muscles. Number of
mice per group is 3
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and results in a much milder phenotype than in human
Duchenne muscular dystrophy [47, 48]. Identifying such
compensatory mechanisms could potentially lead to the
development of novel therapies for ANO5-deficient mus-
cular dystrophy. Interestingly, there are ten different
members of the anoctamin family with significant se-
quence homology and some overlapping expression in a
given tissue. It is thus possible that the loss of Ano5 in
mice is compensated by other anoctamin proteins
expressed. Our RT-PCR data showed that Ano6 and 8
were also expressed in skeletal muscle besides Ano5.
However, none of these or other anoctamin genes were
expressed differently in Ano5 KO skeletal muscles,
suggesting that it is less likely that other anoctamins
compensate for the loss of Ano5 in mice, at least at the
transcriptional level. To fully exclude such possibility, fu-
ture studies would need to be carried out using double
or triple knockout approaches.
Interestingly, although the Ano5 KO mice did not ex-

hibit overt muscle pathology, our microarray analysis
showed that some important signaling pathways were
dysregulated in the KO muscle. In particular, expression
of the genes involved in the lipid metabolism and innate
immune pathways were significantly altered. These data
suggest a potential function of Ano5 in maintaining the
metabolic homeostasis in the skeletal muscle.

Conclusions
The results presented in this study demonstrates that
genetic ablation of Ano5 in C57BL6/J mice does not re-
capitulate ANO5-deficient muscular dystrophy and asso-
ciated cardiomyopathy as in human patients. However,
Ano5 deficiency results in altered gene expression in the
lipid metabolism and complement signaling pathways.

Additional files

Additional file 1: Table S1. Primer list. Primers for genotyping, RT, and
real-time PCR.

Additional file 2: Figure S1. Test of anti-Ano5 antibodies by Western
blotting. a The anti-Ano5 antibody (sc-169626) from Santa Cruz
Biotechnology did not detect any positive signal in human Ano5-expressing
cell lysate, which was correctly detected by the anti-GFP antibody at the
predicted size. b The anti-Ano5 antibody (AP8580B) from Abgent produced
a prominent band at about 100 kDa in both negative and positive samples;
however, this band is not Ano5 because the Ano5-YFP fusion protein should
be around 135 kDa as correctly detected by the anti-GFP antibody. The
arrows point to the correct Ano5-YFP fusion protein. These experiments
were repeated at least three times.

Additional file 3: Figure S2. H&E-stained histological sections of the
gastrocnemius and quadriceps from 8-month-old mice of the indicated
genotypes. Scale bar = 50 μm. The number of mice is 6–8 for each group.

Additional file 4: Figure S3. Masson’s trichrome-stained histological
sections of the gastrocnemius and quadriceps from 8- to 18-month-old
mice of the indicated genotypes. Scale bar = 50 μm. The number of mice
is 6–8 for each group.

Additional file 5: Figure S4. Muscle regeneration after cardiotoxin
injury in Ano5 KO mice. a Representative H&E-stained gastrocnemius
muscle sections from WT or Ano5 KO mice after 7, 14, and 21 days
post-CTX-induced injury. Scale bar = 100 μm. b Representative
immunofluorescence images for caveolin-3 (green) and nucleus (DAPI, blue)
staining in gastrocnemius muscle sections from WT and Ano5 KO mice at
14 days after CTX injection. Scale bar = 50 μm. c Quantitative analysis of
the cross-sectional area of muscle fibers of the WT and KO mice at day 14
post-injury. ns, no statistical significance. N of mice: 3–5 for each group.

Additional file 6: Figure S5. Representative images of Masson’s
trichrome-stained histological sections of WT and Ano5 KO hearts after
PBS or ISO treatments for 2 weeks. Scale bar = 50 μm. The number of
mice (18 months of age) is 6–8 for each group.

Additional file 7: Table S2. Echocardiographic measurements.
Echocardiographic measurements in WT and Ano5 KO mice after
isoproterenol injections.

Additional file 8: Table S3. Gene list. List of genes that are
downregulated in the KO skeletal muscles.

Additional file 9: Table S4. Gene list. List of genes that are
upregulated in the KO skeletal muscles.
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