3,953 research outputs found

    Reproducibility of structural strength and stiffness for graphite-epoxy aircraft spoilers

    Get PDF
    Structural strength reproducibility of graphite epoxy composite spoilers for the Boeing 737 aircraft was evaluated by statically loading fifteen spoilers to failure at conditions simulating aerodynamic loads. Spoiler strength and stiffness data were statistically modeled using a two parameter Weibull distribution function. Shape parameter values calculated for the composite spoiler strength and stiffness were within the range of corresponding shape parameter values calculated for material property data of composite laminates. This agreement showed that reproducibility of full scale component structural properties was within the reproducibility range of data from material property tests

    Sm-Nd for Norite 78236 and Eucrite Y980318/433: Implications for Planetary and Solar System Processes

    Get PDF
    Here, we compare Sm-147-Nd-143 and Sm-146-Nd-142 data for lunar norite 78236 to those for approximately 4.54-4.56 Ga old cumulate eucrite Yamato 980318/433 and show that the norite data are compatible with its derivation from an isotopic reservoir similar to that from whence the eucrite pair came. Thus, lunar-like Sm-Nd isotopic systematics are not unique to the Earth-Moon system

    Turbulent dissipation in the ISM: the coexistence of forced and decaying regimes and implications for galaxy formation and evolution

    Get PDF
    We discuss the dissipation of turbulent kinetic energy Ek in the global ISM by means of 2-D, MHD, non-isothermal simulations in the presence of model radiative heating and cooling. We argue that dissipation in 2D is representative of that in three dimensions as long as it is dominated by shocks rather than by a turbulent cascade. Energy is injected at a few isolated sites in space, over relatively small scales, and over short time periods. This leads to the coexistence of forced and decaying regimes in the same flow. We find that the ISM-like flow dissipates its turbulent energy rapidly. In simulations with forcing, the input parameters are the radius l_f of the forcing region, the total kinetic energy e_k each source deposits into the flow, and the rate of formation of those regions, sfr_OB. The global dissipation time t_d depends mainly on l_f. In terms of measurable properties of the ISM, t_d >= Sigma_g u_rms^2/(e_k sfr_OB), where Sigma_g is the average gas surface density and u_rms is the rms velocity dispersion. For the solar neighborhood, t_d >= 1.5x10^7 yr. The global dissipation time is consistently smaller than the crossing time of the largest energy-containing scales. In decaying simulations, Ek decreases with time as t^-n, where n~0.8-0.9. This suggests a decay with distance d as Ek\propto d^{-2n/(2-n)} in the mixed forced+decaying case. If applicable to the vertical direction, our results support models of galaxy evolution in which stellar energy injection provides significant support for the gas disk thickness, but not models of galaxy formation in which this energy injection is supposed to reheat an intra-halo medium at distances of up to 10-20 times the optical galaxy size, as the dissipation occurs on distances comparable to the disk height.Comment: 23 pages, including figures. To appear in ApJ. Abstract abridge

    Dating Melt Rock 63545 By Rb-Sr and Sm-Nd: Age of Imbrium; Spa Dress Rehearsal

    Get PDF
    Apollo 16 sample 63545 was initially described as one of a group of 19 generally rounded, fine-grained, crystalline rocks that were collected as rake samples [1]. This 16 g "rocklet" was collected at Station 13 on the ejecta blanket of North Ray Crater at the foot of Smoky Mountain [2]. Originally classified as a Very High Alumina (VHA) basalt on geochemical grounds [3], it was later argued to be an impact melt rock [4]. Here we report a Rb-Sr and Sm-Nd isotopic study that shows that some portions of the rock failed to reach isotopic equilibrium on last melting in agreement with the impact melt rock interpretation. Nevertheless, by omitting mineral fractions that are discordant with the majority of the data, we arrive at the time of last melting as 3.88 plus or minus 0.05 Ga ago. This age is in agreement with the Ar-39/Ar-40 plateau age of 3839 plus or minus 23 Ma [5], if the latter is adjusted for the ~1.4-1.8% revision in the age of the hornblende monitor [6]. This investigation was undertaken in part as proof-of-concept for SPA-basin sample return

    Two Examples of Circular Motion for Introductory Courses in Relativity

    Get PDF
    The circular twin paradox and Thomas Precession are presented in a way that makes both accessible to students in introductory relativity courses. Both are discussed by examining what happens during travel around a polygon and then in the limit as the polygon tends to a circle. Since relativistic predictions based on these examples can be verified in experiments with macroscopic objects such as atomic clocks and the gyroscopes on Gravity Probe B, they are particularly convincing to introductory students.Comment: Accepted by the American Journal of Physics This version includes revision

    Nitrogen and Water Stress Impact on Hard Red Spring Wheat Crop Reflectance, Yield and Grain Quality

    Get PDF
    Water and nitrogen stress impact hard red spring wheat (Triticum aestivum) crop reflectance, yield and grain quality. To minimize yield losses from nitrogen (N) and water stress, it is essential to apply appropriate N in relation to water stress. The objective of this experiment was to determine the influence of N and water stress on hard red spring wheat crop reflectance, yield, and grain quality. Complete randomized block experiments were conducted in 2003, 2004 and 2004 in dryland and irrigated fields at three locations in central South Dakota. Treatments consisted of N rates and N application at different growth stages. Nitrogen fertilizer rates ranged from 0 to 200 kg ha-1. Nitrogen fertilizer application times were (1) planting; (2) planting and tillering (Feekes 2 -3) or (3) tillering (Feekes 2 -3). Reflectance data was collected using a Cropscan and a CropCircle radiometer. Reflectance data was collected at bare soil, tillering (Feekes 2-3) and flag leaf (Feekes 9-10). Carbon 13 isotopic discrimination (Ä) was used to determine yield loss to nitrogen or water stress. Reflectance data was compared to yield and Ä values or grain quality and Ä values. Correlation of crop reflectance (measured at the different growth stages and by the different radiometers) with yield loss to nitrogen or water and grain quality will be presented. Information presented will be used to make corrective nitrogen treatments and improve marketing decisions as related to grain quality

    Redetermination of the Sm-Nd Age and Initial (Epsilon)Nd of Lunar Troctolite 76535: Implications for Lunar Crustal Development

    Get PDF
    Lunar troctolite 76535 is an old lunar rock predating the era of the lunar cataclysmic bombardment, but its radiometrially determined ages have been discordant [1-3]. The most recent multi-chronometer study [4] gave preferred ages of 4226+/-35 Ma and 4236+/-15 Ma from a Pb-207/Pb-206 isochron and an U-Pb upper concordia intercept, resp. We derive an age of 4323+/-64 Ma from Sm-Nd data reported by [4] for the bulk rock and three mineral separates. They derived an age of approx.4.38 Ga from combined Rb-Sr data [3,4] by omitting data for olivine separates. Ar-39-Ar-40 ages of approx.4.2 Ga are summarized by [5]. New Sm-147-Nd-143 data presented here give an age of 4335+/-71 Ma in agreement with the Sm-Nd age from [4], whereas Sm-146-Nd-142 data give a model age T(sub LEW) = 4439+/-22 Ma. Further, initial (Epsilon)Nd-143 for 76535 conforms to the Nd-143 evolution expected in an urKREEP [6] reservoir, consistent with inheritance of urKREEP Sm-Nd systematics via assimilation. We show that urKREEP Sm-Nd systematics require the lunar initial (Epsilon)Nd-143 to exceed the Chondritic Uniform Reservoir (CHUR) value [7], but are consistent with evolution from initial (Epsilon)Nd-143 like that of the HED meteorite parent body as defined by a 4557+/-20 Ma internal isochron for the cumulate eucrites Y-980433 and Y- 980318 [8]

    Mn-53-Cr-53 Systematics of R-Chondrite NWA 753

    Get PDF
    Chondrules and chondrites are interpreted as objects formed in the early solar system, and it is important to study them in order to elucidate its evolution. Here, we report the study of the Mn-Cr systematics of the R-Chondrite NWA753 and compare the results to other chondrite data. The goal was to determine Cr isotopic and age variations among chondrite groups with different O-isotope signatures. The Mn-53-Cr-53 method as applied to individual chondrules [1] or bulk chondrites [2] is based on the assumption that 53Mn was initially homogeneously distributed in that portion the solar nebula where the chondrules and/or chondrites formed. However, different groups of chondrites formed from regions of different O-isotope compositions. So, different types of chondrites also may have had different initial Mn-53 abundances and/or Cr isotopic compositions. Thus, it is important to determine the Cr isotopic systematics among chondrites from various chondrite groups. We are studying CO-chondrite ALH83108 and Tagish Lake in addition to R-Chondrite NWA753. These meteorites have very distinct O-isotope compositions (Figure 1)
    corecore