42,957 research outputs found

    Computer program reduces and provides profile plot of surface plate calibration data

    Get PDF
    Computer program which yields CRT displays will decrease the time and labor required to reduce and provide a profile plot of surface plate calibration data. The displays depict actual and resolved data points for each individually calibrated line

    Method for observing the features characterizing the surface of a land mass

    Get PDF
    A method is described where a propeller driven, hydrazine powered aircraft is remotely piloted through rarefied atmosphere of a selected planet, including the planet Earth. It is employed as a communication platform for a telemetry system provided for relaying information relating to features characterizing the surface of the planet

    The employment effects of the Working Families Tax Credit

    Get PDF
    In October 1999 WFTC replaced Family Credit as the main package of in-work financial support for families with children. This note compares the results of three IFS projects assessing the effectiveness of the WFTC in getting people back to work

    Point interactions in acoustics: one dimensional models

    Get PDF
    A one dimensional system made up of a compressible fluid and several mechanical oscillators, coupled to the acoustic field in the fluid, is analyzed for different settings of the oscillators array. The dynamical models are formulated in terms of singular perturbations of the decoupled dynamics of the acoustic field and the mechanical oscillators. Detailed spectral properties of the generators of the dynamics are given for each model we consider. In the case of a periodic array of mechanical oscillators it is shown that the energy spectrum presents a band structure.Comment: revised version, 30 pages, 2 figure

    Quantum singularities in (2+1) dimensional matter coupled black hole spacetimes

    Full text link
    Quantum singularities considered in the 3D BTZ spacetime by Pitelli and Letelier (Phys. Rev. D77: 124030, 2008) is extended to charged BTZ and 3D Einstein-Maxwell-dilaton gravity spacetimes. The occurence of naked singularities in the Einstein-Maxwell extension of the BTZ spacetime both in linear and non-linear electrodynamics as well as in the Einstein-Maxwell-dilaton gravity spacetimes are analysed with the quantum test fields obeying the Klein-Gordon and Dirac equations. We show that with the inclusion of the matter fields; the conical geometry near r=0 is removed and restricted classes of solutions are admitted for the Klein-Gordon and Dirac equations. Hence, the classical central singularity at r=0 turns out to be quantum mechanically singular for quantum particles obeying Klein-Gordon equation but nonsingular for fermions obeying Dirac equation. Explicit calculations reveal that the occurrence of the timelike naked singularities in the considered spacetimes do not violate the cosmic censorship hypothesis as far as the Dirac fields are concerned. The role of horizons that clothes the singularity in the black hole cases is replaced by repulsive potential barrier against the propagation of Dirac fields.Comment: 13 pages, 1 figure. Final version, to appear in PR

    The 3D version of the finite element program FESTER

    Get PDF
    In this report, a detailed description of the 3-D version finite element pro-gram FESTER is given. This includes: 1. A brief introduction to the package FESTER; 2. Preparing an input data file for the 3D version of FESTER; 3. Principal stress and stress invariant analyses; 4. 2D joint element (surface contact) characterisation and its mathematical formulation; 5. Formulations of the 3D stress-strain analyses for both isotropic and anisotropic materials, plane of weakness and cracking criteria; 6. 3D brick elements, infinity elements and their corresponding shape and mapping functions; 7. Large-displacement formulations; 8. Modifications to the subroutines INVAR, JNTB, TMAT, MOD2 etc; 9. Numerical examples; and 10. Conclusions

    Forcing a sparse minor

    Full text link
    This paper addresses the following question for a given graph HH: what is the minimum number f(H)f(H) such that every graph with average degree at least f(H)f(H) contains HH as a minor? Due to connections with Hadwiger's Conjecture, this question has been studied in depth when HH is a complete graph. Kostochka and Thomason independently proved that f(Kt)=ctlntf(K_t)=ct\sqrt{\ln t}. More generally, Myers and Thomason determined f(H)f(H) when HH has a super-linear number of edges. We focus on the case when HH has a linear number of edges. Our main result, which complements the result of Myers and Thomason, states that if HH has tt vertices and average degree dd at least some absolute constant, then f(H)3.895lndtf(H)\leq 3.895\sqrt{\ln d}\,t. Furthermore, motivated by the case when HH has small average degree, we prove that if HH has tt vertices and qq edges, then f(H)t+6.291qf(H) \leq t+6.291q (where the coefficient of 1 in the tt term is best possible)

    Planning, creating and documenting a NASTRAN finite element model of a modern helicopter

    Get PDF
    Mathematical models based on the finite element method of structural analysis as embodied in the NASTRAN computer code are widely used by the helicopter industry to calculate static internal loads and vibration of airframe structure. The internal loads are routinely used for sizing structural members. The vibration predictions are not yet relied on during design. NASA's Langley Research Center sponsored a program to conduct an application of the finite element method with emphasis on predicting structural vibration. The Army/Boeing CH-47D helicopter was used as the modeling subject. The objective was to engender the needed trust in vibration predictions using these models and establish a body of modeling guides which would enable confident future prediction of airframe vibration as part of the regular design process

    Remarks on imperfections of axially loaded cylinders

    Get PDF
    Imperfections of axially loaded cylindrical shell
    corecore