22,908 research outputs found

    Birman-Schwinger and the number of Andreev states in BCS superconductors

    Full text link
    The number of bound states due to inhomogeneities in a BCS superconductor is usually established either by variational means or via exact solutions of particularly simple, symmetric perturbations. Here we propose estimating the number of sub-gap states using the Birman-Schwinger principle. We show how to obtain upper bounds on the number of sub-gap states for small normal regions and derive a suitable Cwikel-Lieb-Rozenblum inequality. We also estimate the number of such states for large normal regions using high dimensional generalizations of the Szego theorem. The method works equally well for local inhomogeneities of the order parameter and for external potentials.Comment: Final version to appear in Phys Rev

    Erosion Control in Ohio Farming

    Get PDF
    PDF pages: 4

    Permo-Pennsylvanian Section of the Hartville Area of Wyoming (with implications for Nebraska)

    Get PDF

    Correlation of Formations Drilled in the Midland Forester Well near Fremont, Nebraska

    Get PDF

    Deep Wells at Lincoln, Nebraska

    Get PDF

    Departmental Functions of the Conservation and Survey Division

    Get PDF

    Correlation of the Amerada Petroleum Company Well Drilled near Nehawka, Nebraska

    Get PDF

    Water-Bearing Formations of Nebraska

    Get PDF

    Faraday effect revisited: sum rules and convergence issues

    Full text link
    This is the third paper of a series revisiting the Faraday effect. The question of the absolute convergence of the sums over the band indices entering the Verdet constant is considered. In general, sum rules and traces per unit volume play an important role in solid state physics, and they give rise to certain convergence problems widely ignored by physicists. We give a complete answer in the case of smooth potentials and formulate an open problem related to less regular perturbations.Comment: Dedicated to the memory of our late friend Pierre Duclos. Accepted for publication in Journal of Physics A: Mathematical and Theoretical

    Dipoles in Graphene Have Infinitely Many Bound States

    Get PDF
    We show that in graphene charge distributions with non-vanishing dipole moment have infinitely many bound states. The corresponding eigenvalues accumulate at the edges of the gap faster than any power
    • …
    corecore