377 research outputs found
Research Issues in Genetic Testing of Adolescents for Obesity
Obesity is often established in adolescence, and advances are being made in identifying its genetic underpinnings. We examine issues related to the eventual likelihood of genetic tests for obesity targeted to adolescents: family involvement; comprehension of the testās meaning; how knowledge of genetic status may affect psychological adaptation; minorsā ability to control events; parental/child autonomy; ability to make informed medical decisions; self-esteem; unclear distinctions between early/late onset for this condition; and social stigmatization. The public health arena will be important in educating families about possible future genetic tests for obesity
Excretion and Perception of a Characteristic Odor in Urine after Asparagus Ingestion: a Psychophysical and Genetic Study
The urine of people who have recently eaten asparagus has a sulfurous odor, which is distinct and similar to cooked cabbage. Using a 2-alternative forced-choice procedure, we examined individual differences in both the production of the odorants and the perception of this asparagus odor in urine. We conclude that individual differences exist in both odorant production and odor perception. The biological basis for the inability to produce the metabolite in detectable quantities is unknown, but the inability to smell the odor is associated with a single nucleotide polymorphism (rs4481887) within a 50-gene cluster of olfactory receptors
Coordination and control ā limits in standard representations of multi-reservoir operations in hydrological modeling
Major multi-reservoir cascades represent a primary mechanism for dealing with hydrologic variability and extremes within institutionally complex river basins worldwide. These coordinated management processes fundamentally reshape water balance dynamics. Yet, multi-reservoir coordination processes have been largely ignored in the increasingly sophisticated representations of reservoir operations within large-scale hydrological models. The aim of this paper is twofold, namely (i) to provide evidence that the common modeling practice of parameterizing each reservoir in a cascade independently from the others is a significant approximation and (ii) to demonstrate potential unintended consequences of this independence approximation when simulating the dynamics of hydrological extremes in complex reservoir cascades. We explore these questions using the Water Balance Model, which features detailed representations of the human infrastructure coupled to the natural processes that shape water balance dynamics. It is applied to the Upper Snake River basin in the western US and its heavily regulated multi-reservoir cascade. We employ a time-varying sensitivity analysis that utilizes the method of Morris factor screening to explicitly track how the dominant release rule parameters evolve both along the cascade and in time according to seasonal high- and low-flow events. This enables us to address aim (i) by demonstrating how the progressive and cumulative dominance of upstream releases significantly dampens the ability of downstream reservoir rules\u27 parameters to influence flow conditions. We address aim (ii) by comparing simulation results with observed reservoir operations during critical low-flow and high-flow events in the basin. Our time-varying parameter sensitivity analysis with the method of Morris clarifies how independent single-reservoir parameterizations and their tacit assumption of independence leads to reservoir release behaviors that generate artificial water shortages and flooding, whereas the observed coordinated cascade operations avoided these outcomes for the same events. To further explore the role of (non-)coordination in the large deviations from the observed operations, we use an offline multi-reservoir water balance model in which adding basic coordination mechanisms drawn from the observed emergency operations is sufficient to correct the deficiencies of the independently parameterized reservoir rules from the hydrological model. These results demonstrate the importance of understanding the stateāspace context in which reservoir releases occur and where operational coordination plays a crucial role in avoiding or mitigating water-related extremes. Understanding how major infrastructure is coordinated and controlled in major river basins is essential for properly assessing future flood and drought hazards in a changing world
An Exploration of TasteāEmotion Mappings from the Perspective of Food Design Practitioners
This paper explores taste-emotion mappings and how they may inform the design of user experience in HCI. We report interviews with 7 food industry professionals and discuss the findings against laboratory-based psychology studies. While the sweet-positive affect and bitter-negative affect mappings were confirmed, those for sour, salty and umami tastes were challenged. Our outcomes highlight a more nuanced understanding of taste-emotion mappings, the influence of taste intensity and the importance of narrative and temporality when designing taste experience in naturalistic settings
Reduced body weight is a common effect of gene knockout in mice
<p>Abstract</p> <p>Background</p> <p>During a search for obesity candidate genes in a small region of the mouse genome, we noticed that many genes when knocked out influence body weight. To determine whether this was a general feature of gene knockout or a chance occurrence, we surveyed the Jackson Laboratory Mouse Genome Database for knockout mouse strains and their phenotypes. Body weights were not available for all strains so we also obtained body weight information by contacting a random sample of investigators responsible for a knockout strain.</p> <p>Results</p> <p>We classified each knockout mouse strain as (1) lighter and smaller, (2) larger and heavier, or (3) the same weight, relative to control mice. We excluded knockout strains that died early in life, even though this type of lethality is often associated with a small embryo or reduced body size. Based on a dataset of 1,977 knockout strains, we found that that 31% of viable knockout mouse strains weighed less and an additional 3% weighed more than did controls.</p> <p>Conclusion</p> <p>Body weight is potentially a latent variable in about a third of experiments that use knockout mice and should be considered in interpreting experimental outcomes, e.g., in studies of hypertension, drug and hormone metabolism, organ development, cell proliferation and apoptosis, digestion, heart rate, or atherosclerosis. If we assume that the knockout genes we surveyed are representative then upward of 6,000 genes are predicted to influence the size of a mouse. Body weight is highly heritable, and numerous quantitative trait loci have been mapped in mice, but "multigenic" is an insufficient term for the thousands of loci that could contribute to this complex trait.</p
Pseudogenization of a Sweet-Receptor Gene Accounts for Cats' Indifference toward Sugar
Although domestic cats (Felis silvestris catus) possess an otherwise functional sense of taste, they, unlike most mammals, do not prefer and may be unable to detect the sweetness of sugars. One possible explanation for this behavior is that cats lack the sensory system to taste sugars and therefore are indifferent to them. Drawing on work in mice, demonstrating that alleles of sweet-receptor genes predict low sugar intake, we examined the possibility that genes involved in the initial transduction of sweet perception might account for the indifference to sweet-tasting foods by cats. We characterized the sweet-receptor genes of domestic cats as well as those of other members of the Felidae family of obligate carnivores, tiger and cheetah. Because the mammalian sweet-taste receptor is formed by the dimerization of two proteins (T1R2 and T1R3; gene symbols Tas1r2 and Tas1r3), we identified and sequenced both genes in the cat by screening a feline genomic BAC library and by performing PCR with degenerate primers on cat genomic DNA. Gene expression was assessed by RT-PCR of taste tissue, in situ hybridization, and immunohistochemistry. The cat Tas1r3 gene shows high sequence similarity with functional Tas1r3 genes of other species. Message from Tas1r3 was detected by RT-PCR of taste tissue. In situ hybridization and immunohistochemical studies demonstrate that Tas1r3 is expressed, as expected, in taste buds. However, the cat Tas1r2 gene shows a 247-base pair microdeletion in exon 3 and stop codons in exons 4 and 6. There was no evidence of detectable mRNA from cat Tas1r2 by RT-PCR or in situ hybridization, and no evidence of protein expression by immunohistochemistry. Tas1r2 in tiger and cheetah and in six healthy adult domestic cats all show the similar deletion and stop codons. We conclude that cat Tas1r3 is an apparently functional and expressed receptor but that cat Tas1r2 is an unexpressed pseudogene. A functional sweet-taste receptor heteromer cannot form, and thus the cat lacks the receptor likely necessary for detection of sweet stimuli. This molecular change was very likely an important event in the evolution of the cat's carnivorous behavior
Polymorphisms in the Taste Receptor Gene (Tas1r3) Region are Associated with Saccharin Preference in 30 Mouse Strains.
The results of recent studies suggest that the mouse Sac (saccharin preference) locus is identical to the Tas1r3 (taste receptor) gene. The goal of this study was to identify Tas1r3 sequence variants associated with saccharin preference in a large number of inbred mouse strains. Initially, we sequenced approximately 6.7 kb of the Tas1r3 gene and its flanking regions from six inbred mouse strains with high and low saccharin preference, including the strains in which the Sac alleles were described originally (C57BL/6J, Sac(b); DBA/2J, Sac(d)). Of the 89 sequence variants detected among these six strains, eight polymorphic sites were significantly associated with preferences for 1.6 mm saccharin. Next, each of these eight variant sites were genotyped in 24 additional mouse strains. Analysis of the genotype-phenotype associations in all 30 strains showed the strongest association with saccharin preference at three sites: nucleotide (nt) -791 (3 bp insertion/deletion), nt +135 (Ser45Ser), and nt +179 (Ile60Thr). We measured Tas1r3 gene expression, transcript size, and T1R3 immunoreactivity in the taste tissue of two inbred mouse strains with different Tas1r3 haplotypes and saccharin preferences. The results of these experiments suggest that the polymorphisms associated with saccharin preference do not act by blocking gene expression, changing alternative splicing, or interfering with protein translation in taste tissue. The amino acid substitution (Ile60Thr) may influence the ability of the protein to form dimers or bind sweeteners. Here, we present data for future studies directed to experimentally confirm the function of these polymorphisms and highlight some of the difficulties of identifying specific DNA sequence variants that underlie quantitative trait loci
Automatic analysis of facilitated taste-liking
This paper focuses on: (i) Automatic recognition of taste-liking
from facial videos by comparatively training and evaluating models
with engineered features and state-of-the-art deep learning
architectures, and (ii) analysing the classification results along the
aspects of facilitator type, and the gender, ethnicity, and personality
of the participants. To this aim, a new beverage tasting dataset
acquired under different conditions (human vs. robot facilitator
and priming vs. non-priming facilitation) is utilised. The experimental
results show that: (i) The deep spatiotemporal architectures
provide better classification results than the engineered feature
models; (ii) the classification results for all three classes of liking,
neutral and disliking reach F1 scores in the range of 71%-91%; (iii)
the personality-aware network that fuses participantsā personality
information with that of facial reaction features provides improved
classification performance; and (iv) classification results vary across
participant gender, but not across facilitator type and participant
ethnicity.EPSR
Response to reduced nicotine content cigarettes among smokers differing in tobacco dependence severity
This study examines whether tobacco dependence severity moderates the acute effects of reducing nicotine content in cigarettes on the addiction potential of smoking, craving/withdrawal, or smoking topography. Participants (NāÆ=āÆ169) were daily smokers with mild, moderate, or high tobacco-dependence severity using the Heaviness of Smoking Index. Following brief abstinence, participants smoked research cigarettes varying in nicotine content (0.4, 2.4, 5.2, 15.8āÆmgāÆnicotine/g tobacco) in a within-subject design. Results were analyzed using repeated measures analysis of co-variance. No main effects of dependence severity or interactions with nicotine dose were noted in relative reinforcing effects in concurrent choice testing or subjective effects on the modified Cigarette Evaluation Questionnaire. Demand for smoking in the Cigarette Purchase Task was greater among more dependent smokers, but reducing nicotine content decreased demand independent of dependence severity. Dependence severity did not significantly alter response to reduced nicotine content cigarettes on the Minnesota Tobacco Withdrawal Scale nor Questionnaire of Smoking Urges-brief (QSU) Factor-2 scale; dependence severity and dose interacted significantly on the QSU-brief Factor-1 scale, with reductions dependent on dose among highly but not mildly or moderately dependent smokers. Dependence severity and dose interacted significantly on only one of six measures of smoking topography (i.e., maximum flow rate), which increased as dose increased among mildly and moderately but not highly dependent smokers. These results suggest that dependence severity has no moderating influence on the ability of reduced nicotine content cigarettes to lower the addiction potential of smoking, and minimal effects on relief from craving/withdrawal or smoking topography
- ā¦