101 research outputs found

    Viruses and prions of Saccharomyces cerevisiae

    Get PDF
    Cahpter one.-- PMC4141569Saccharomyces cerevisiae has been a key experimental organism for the study of infectious diseases, including dsRNA viruses, ssRNA viruses, and prions. Studies of the mechanisms of virus and prion replication, virus structure, and structure of the amyloid filaments that are the basis of yeast prions have been at the forefront of such studies in these classes of infectious entities. Yeast has been particularly useful in defining the interactions of the infectious elements with cellular components: chromosomally encoded proteins necessary for blocking the propagation of the viruses and prions, and proteins involved in the expression of viral components. Here, we emphasize the L-A dsRNA virus and its killer-toxin-encoding satellites, the 20S and 23S ssRNA naked viruses, and the several infectious proteins (prions) of yeast. © 2013 Elsevier Inc.R. W. was supported by the Intramural Program of the National Institute of Diabetes and Digestive and Kidney Diseases. T. F. and R. E. were supported by Grant BFU2010-15768 from the Spanish Ministry of Education and Science.Peer Reviewe

    Prion variants, species barriers, generation and propagation

    Get PDF
    Prion variants faithfully propagate across species barriers, but if the barrier is too high, new variants (mutants) are selected, as shown in a recent BMC Biology report. Protein sequence alteration can prevent accurate structural templating at filament ends producing prion variants

    A viral expression factor behaves as a prion

    Get PDF
    Prions are proteins that can fold into multiple conformations some of which are self-propagating. Such prion-forming proteins have been found in animal, plant, fungal and bacterial species, but have not yet been identified in viruses. Here we report that LEF-10, a baculovirus-encoded protein, behaves as a prion. Full-length LEF-10 or its candidate prion-forming domain (cPrD) can functionally replace the PrD of Sup35, a widely studied prion-forming protein from yeast, displaying a [PSI+]-like phenotype. Furthermore, we observe that high multiplicity of infection can induce the conversion of LEF-10 into an aggregated state in virus-infected cells, resulting in the inhibition of viral late gene expression. Our findings extend the knowledge of current prion proteins from cellular organisms to non-cellular life forms and provide evidence to support the hypothesis that prion-forming proteins are a widespread phenomenon in nature
    corecore