1,541 research outputs found

    Adjuvants for Leishmania vaccines: from models to clinical application

    Get PDF
    Two million new cases of leishmaniasis occur every year, with the cutaneous leishmaniasis (CL) presentation accounting for approximately two-thirds of all cases. Despite the high incidence rates and geographic expansion of the disease, CL remains a neglected tropical disease without effective intervention strategies. Efforts to address this deficit have given rise to the experimental murine model of CL. By virtue of its simplicity and pliability, the CL model has been used to provide substantial information regarding cellular immunity, as well as in the discovery and evaluation of various vaccine adjuvants. The CL model has facilitated in vivo studies of the mechanism of action of many adjuvants, including the TLR4 agonist monophosphoryl lipid A, the TLR7/8 agonist imiquimod, the TLR9 agonist CpG, adenoviral vectors, and the immunostimulatory complexes. Together, these studies have helped to unveil the requirement for certain types of immune responses at specific stages of CL disease and provide a basis to aid the design of effective second-generation vaccines for human CL. This review focuses on adjuvants that have been tested in experimental CL, outlining how they have helped advance our understanding of the disease and ultimately, how they have performed when applied within clinical trials against human CL

    A TLR4 agonist synergizes with dendritic cell-directed lentiviral vectors for inducing antigen-specific immune responses

    Get PDF
    TLR4 agonists can be used as adjuvants to trigger innate immune responses of antigen-presenting cells (APCs) such as dendritic cells (DCs) to enhance vaccine-specific immunity. Adjuvant effects of TLR4 agonists are mediated by downstream signaling controlled by both MyD88 and TRIF adapter proteins. In this study, we investigated the adjuvanting capacity of glucopyranosyl lipid A (GLA), a chemically synthesized TLR4 agonist, to boost antigen-specific immunity elicited by DC-directed lentiviral vectors (DC-LV). We found that stimulation by this agonist in vitro can activate DCs in a TLR4-dependent manner. The agonist can significantly boost DC-LV-induced humoral and cellular immune responses, resulting in better antitumor reactions in response to tumor challenges. We observed that the adjuvant-mediated enhancement of cytotoxic CD8+ T cell responses is CD4+ T cell-dependent and determined that in vitro the agonist stimulation involves the participation of both MyD88 and TRIF pathways to activate DCs. In vivo immunization study however revealed that adjuvant effects depend more on the MyD88 signaling as TRIF^(−/−) mice but not MyD88^(−/−) mice were able to maintain the enhanced CD8+ T cell responses upon DC-LV immunization. Thus, our study supports the use of this TLR4 agonist as a potent adjuvant candidate for boosting DC-LV immunization

    CKS Proteins Promote Checkpoint Recovery by Stimulating Phosphorylation of Treslin

    Get PDF
    CKS proteins are small (9-kDa) polypeptides that bind to a subset of the cyclin-dependent kinases. The two paralogs expressed in mammals, Cks1 and Cks2, share an overlapping function that is essential for early development. However, both proteins are frequently overexpressed in human malignancy. It has been shown that CKS protein overexpression overrides the replication stress checkpoint, promoting continued origin firing. This finding has led to the proposal that CKS protein-dependent checkpoint override allows premalignant cells to evade oncogene stress barriers, providing a causal link to oncogenesis. Here, we provide mechanistic insight into how overexpression of CKS proteins promotes override of the replication stress checkpoint. We show that CKS proteins greatly enhance the ability of Cdk2 to phosphorylate the key replication initiation protein treslin in vitro. Furthermore, stimulation of treslin phosphorylation does not occur by the canonical adapter mechanism demonstrated for other substrates, as cyclin-dependent kinase (CDK) binding-defective mutants are capable of stimulating treslin phosphorylation. This effect is recapitulated in vivo, where silencing of Cks1 and Cks2 decreases treslin phosphorylation, and overexpression of wild-type or CDK binding-defective Cks2 prevents checkpoint-dependent dephosphorylation of treslin. Finally, we provide evidence that the role of CKS protein-dependent checkpoint override involves recovery from checkpoint-mediated arrest of DNA replication

    A Dual TLR Agonist Adjuvant Enhances the Immunogenicity and Protective Efficacy of the Tuberculosis Vaccine Antigen ID93

    Get PDF
    With over eight million cases of tuberculosis each year there is a pressing need for the development of new vaccines against Mycobacterium tuberculosis. Subunit vaccines consisting of recombinant proteins are an attractive vaccine approach due to their inherent safety compared to attenuated live vaccines and the uniformity of manufacture. Addition of properly formulated TLR agonist-containing adjuvants to recombinant protein vaccines enhances the antigen-specific CD4+ T cell response characterized by IFN-γ and TNF, both of which are critical for the control of TB. We have developed a clinical stage vaccine candidate consisting of a recombinant fusion protein ID93 adjuvanted with the TLR4 agonist GLA-SE. Here we examine whether ID93+GLA-SE can be improved by the addition of a second TLR agonist. Addition of CpG containing DNA to ID93+GLA-SE enhanced the magnitude of the multi-functional TH1 response against ID93 characterized by co-production of IFN-γ, TNF, and IL-2. Addition of CpG also improved the protective efficacy of ID93+GLA-SE. Finally we demonstrate that this adjuvant synergy between GLA and CpG is independent of TRIF signaling, whereas TRIF is necessary for the adjuvant activity of GLA-SE in the absence of CpG

    PG 2131+066: A Test of Pre-White Dwarf Asteroseismology

    Get PDF
    PG 2131+066 is a composite-spectrum binary with a hot pulsating PG 1159-type pre-white dwarf and an early M-type main sequence star. Analysis of Whole Earth Telescope observations of the pulsating pre-white dwarf component provided an asteroseismological determination of its mass, luminosity, and effective temperature. These determinations allowed Kawaler et al. (1995) to determine the distance to this star. In this paper, we refine the asteroseismological distance determination, and confirm the distance by an independent measurement to the system via the spectroscopic parallax of the M star. PG 2131+066 was observed by the HST using the original PC in September 1993. Exposures with filters F785LP and F555W both showed the companion at a distance of 0.3 arc seconds. Photometry of the images provides an apparent magnitude for the main sequence companion of v=18.97+/-0.15, from which we find a distance of 560 (+200 -134) pc. We also recalculated the asteroseismological distance to the pre-white dwarf using updated models and new spectroscopic constraints from UV spectra. The new seismological distance is 668 (+78 -83) pc, in satisfactory agreement with the distance of the secondary star. These results suggest that this is indeed a physical binary, and that seismological distance determination may be the best way to determine the distance to the pulsating hot pre-white dwarf stars.Comment: 13 pages, 4 figures, to appear in The Astrophysical Journal, Dec.10, 200

    Development of a model for marburgvirus based on severe-combined immunodeficiency mice

    Get PDF
    The filoviruses, Ebola (EBOV) and Marburg (MARV), cause a lethal hemorrhagic fever. Human isolates of MARV are not lethal to immmunocompetent adult mice and, to date, there are no reports of a mouse-adapted MARV model. Previously, a uniformly lethal EBOV-Zaire mouse-adapted virus was developed by performing 9 sequential passages in progressively older mice (suckling to adult). Evaluation of this model identified many similarities between infection in mice and nonhuman primates, including viral tropism for antigen-presenting cells, high viral titers in the spleen and liver, and an equivalent mean time to death. Existence of the EBOV mouse model has increased our understanding of host responses to filovirus infections and likely has accelerated the development of countermeasures, as it is one of the only hemorrhagic fever viruses that has multiple candidate vaccines and therapeutics. Here, we demonstrate that serially passaging liver homogenates from MARV-infected severe combined immunodeficient (scid) mice was highly successful in reducing the time to death in scid mice from 50–70 days to 7–10 days after MARV-Ci67, -Musoke, or -Ravn challenge. We performed serial sampling studies to characterize the pathology of these scid mouse-adapted MARV strains. These scid mouse-adapted MARV models appear to have many similar properties as the MARV models previously developed in guinea pigs and nonhuman primates. Also, as shown here, the scid-adapted MARV mouse models can be used to evaluate the efficacy of candidate antiviral therapeutic molecules, such as phosphorodiamidate morpholino oligomers or antibodies

    TIGIT Marks Exhausted T Cells, Correlates with Disease Progression, and Serves as a Target for Immune Restoration in HIV and SIV Infection.

    Get PDF
    HIV infection induces phenotypic and functional changes to CD8+ T cells defined by the coordinated upregulation of a series of negative checkpoint receptors that eventually result in T cell exhaustion and failure to control viral replication. We report that effector CD8+ T cells during HIV infection in blood and SIV infection in lymphoid tissue exhibit higher levels of the negative checkpoint receptor TIGIT. Increased frequencies of TIGIT+ and TIGIT+ PD-1+ CD8+ T cells correlated with parameters of HIV and SIV disease progression. TIGIT remained elevated despite viral suppression in those with either pharmacological antiretroviral control or immunologically in elite controllers. HIV and SIV-specific CD8+ T cells were dysfunctional and expressed high levels of TIGIT and PD-1. Ex-vivo single or combinational antibody blockade of TIGIT and/or PD-L1 restored viral-specific CD8+ T cell effector responses. The frequency of TIGIT+ CD4+ T cells correlated with the CD4+ T cell total HIV DNA. These findings identify TIGIT as a novel marker of dysfunctional HIV-specific T cells and suggest TIGIT along with other checkpoint receptors may be novel curative HIV targets to reverse T cell exhaustion
    corecore