1,568 research outputs found

    Weight savings in aerospace vehicles through propellant scavenging

    Get PDF
    Vehicle payload benefits of scavenging hydrogen and oxygen propellants are addressed. The approach used is to select a vehicle and a mission and then select a scavenging system for detailed weight analysis. The Shuttle 2 vehicle on a Space Station rendezvous mission was chosen for study. The propellant scavenging system scavenges liquid hydrogen and liquid oxygen from the launch propulsion tankage during orbital maneuvers and stores them in well insulated liquid accumulators for use in a cryogenic auxiliary propulsion system. The fraction of auxiliary propulsion propellant which may be scavenged for propulsive purposes is estimated to be 45.1 percent. The auxiliary propulsion subsystem dry mass, including the proposed scavenging system, an additional 20 percent for secondary structure, an additional 5 percent for electrical service, a 10 percent weight growth margin, and 15.4 percent propellant reserves and residuals is estimated to be 6331 kg. This study shows that the fraction of the on-orbit vehicle mass required by the auxiliary propulsion system of this Shuttle 2 vehicle using this technology is estimated to be 12.0 percent compared to 19.9 percent for a vehicle with an earth-storable bipropellant system. This results in a vehicle with the capability of delivering an additional 7820 kg to the Space Station

    Advanced APS Impacts on Vehicle Payloads

    Get PDF
    Advanced auxiliary propulsion system (APS) technology has the potential to both, increase the payload capability of earth-to-orbit (ETO) vehicles by reducing APS propellant mass, and simplify ground operations and logistics by reducing the number of fluids on the vehicle and eliminating toxic, corrosive propellants. The impact of integrated cryogenic APS on vehicle payloads is addressed. In this system, launch propulsion system residuals are scavenged from integral launch propulsion tanks for use in the APS. Sufficient propellant is preloaded into the APS to return to earth with margin and noncomplete scavenging assumed. No propellant conditioning is required by the APS, but ambient heat soak is accommodated. High temperature rocket materials enable the use of the unconditioned hydrogen/oxygen in the APS and are estimated to give APS rockets specific impulse of up to about 444 sec. The payload benefits are quantified and compared with an uprated monomethyl hydrazine/nitrogen tetroxide system in a conservative fashion, by assuming a 25.5 percent weight growth for the hydrogen/oxygen system and a 0 percent weight growth for the uprated system. The combination and scavenging and high performance gives payload impacts which are highly mission specific. A payload benefit of 861 kg (1898 lbm) was estimated for a Space Station Freedom rendezvous mission and 2099 kg (4626 lbm) for a sortie mission, with payload impacts varying with the amount of launch propulsion residual propellants. Missions without liquid propellant scavenging were estimated to have payload penalties, however, operational benefits were still possible

    Hydrogen/oxygen auxiliary propulsion technology

    Get PDF
    A survey is provided of hydrogen/oxygen (H/O) auxiliary propulsion system (APS) concepts and low thrust H/O rocket technology. A review of H/O APS studies performed for the Space Shuttle, Space Tug, Space Station Freedom, and Advanced Manned Launch System programs is given. The survey also includes a review of low thrust H/O rocket technology programs, covering liquid H/O and gaseous H/O thrusters, ranging from 6600 N (1500 lbf) to 440 mN (0.1 lbf) thrust. Ignition concepts for H/O thrusters and high temperature, oxidation resistant chamber materials are also reviewed

    Design of a digital signal processing system on chip for an eddy current probe

    Get PDF
    In 1965 Gordon Moore, co-founder of Intel, observed that the number of transistors per square inch on integrated circuits had doubled every year since the integrated circuit was invented. Moore predicted that this trend would continue for the foreseeable future. In subsequent years, the pace slowed down, but data density has doubled approximately every 18 months, which is the current definition of Moore\u27s Law. The Semiconductor Industry Association roadmap derived from Moore\u27s Law promotes continuation of the decrease in minimum feature size and wafer size increase as the bases for the semiconductor industry\u27s successful future. This continuation of the decrease in minimum feature size and increase in wafer size has a number of important implications. One such important implication is that there will be an increase in chip manufacturing cost. This increase in die manufacturing cost has caused chip designers to investigate the implementation of single chip systems instead of the traditional design of multiple chip systems. The benefit of having a single chip system is that it can provide the same performance yet consume less space and power than multiple chip systems, which in turn cut manufacturing cost. The research conducted describes the design and implementation of an integrated circuit digital signal processing system for an eddy current probe. For this project a digital signal processing system that removes noisy signal components and amplifies the signal produced by an eddy current probe was designed. The purpose of this system is to have the ability to detect cracks in a material and to output that information to an ADC, which then is used to provide digital information to a computer for interpolation. In order to create a digital signal processing system capable of this, multiple building blocks are needed. This includes the design of a low pass filter, a variable gain amplifier which incorporates an operational amplifier and digital-to-analog converter, a current bias cell, and a shift register. An analysis and discussion of the design and fabricated integrated circuit in a TSMC 0.18 micron process is presented

    Rent Control in California: Policy Review

    Get PDF
    The largest number of housing units subject to rent control can be found in California, but the policy environment is quite complex and is characterized by a series of interacting state and local laws. This complexity represents a significant barrier for researchers and policymakers seeking a clear and accurate picture of how rent control works in California, and how it incentivizes different behaviors among landlords and tenants alike. This technical report surveys rent control rules in California, with special attention paid to the recent statewide rent caps, historic developments, and the systems in Los Angeles and San Francisco. This report should be regarded as a selective snapshot of the current system, and researchers interested in pursuing their own analyses involving the California systems are encouraged to conduct supplemental legal research. This paper will be updated on a rolling basis as further information comes to light

    Experimental and analytical comparison of flowfields in a 110 N (25 lbf) H2/O2 rocket

    Get PDF
    A gaseous hydrogen/gaseous oxygen 110 N (25 lbf) rocket was examined through the RPLUS code using the full Navier-Stokes equations with finite rate chemistry. Performance tests were conducted on the rocket in an altitude test facility. Preliminary parametric analyses were performed for a range of mixture ratios and fuel film cooling pcts. It is shown that the computed values of specific impulse and characteristic exhaust velocity follow the trend of the experimental data. Specific impulse computed by the code is lower than the comparable test values by about two to three percent. The computed characteristic exhaust velocity values are lower than the comparable test values by three to four pct. Thrust coefficients computed by the code are found to be within two pct. of the measured values. It is concluded that the discrepancy between computed and experimental performance values could not be attributed to experimental uncertainty

    Supply Shock versus Demand Shock

    Get PDF

    Supply Shock versus Demand Shock

    Get PDF

    Supply Shock Versus Demand Shock: The Local Effects of New Housing in Low-Income Areas

    Get PDF
    We study the local effects of new market-rate housing in low-income areas using microdata on large apartment buildings, rents, and migration. New buildings decrease nearby rents by 5 to 7 percent relative to locations slightly farther away or developed later, and they increase in-migration from low-income areas. Results are driven by a large supply effect—we show that new buildings absorb many high-income households—that overwhelms any offsetting endogenous amenity effect. The latter may be small because most new buildings go into already-changing areas. Contrary to common concerns, new buildings slow local rent increases rather than initiate or accelerate them

    Comment on `On the Quantum Theory of Molecules' [J. Chem.Phys. {\bf 137}, 22A544 (2012)]

    Full text link
    In our previous paper [J. Chem.Phys. {\bf 137}, 22A544 (2012)] we argued that the Born-Oppenheimer approximation could not be based on an exact transformation of the molecular Schr\"{o}dinger equation. In this Comment we suggest that the fundamental reason for the approximate nature of the Born-Oppenheimer model is the lack of a complete set of functions for the electronic space, and the need to describe the continuous spectrum using spectral projection.Comment: 2 page
    • …
    corecore