29,221 research outputs found
The Cauchy Problem for the Wave Equation in the Schwarzschild Geometry
The Cauchy problem is considered for the scalar wave equation in the
Schwarzschild geometry. We derive an integral spectral representation for the
solution and prove pointwise decay in time.Comment: 33 page
Birman-Schwinger and the number of Andreev states in BCS superconductors
The number of bound states due to inhomogeneities in a BCS superconductor is
usually established either by variational means or via exact solutions of
particularly simple, symmetric perturbations. Here we propose estimating the
number of sub-gap states using the Birman-Schwinger principle. We show how to
obtain upper bounds on the number of sub-gap states for small normal regions
and derive a suitable Cwikel-Lieb-Rozenblum inequality. We also estimate the
number of such states for large normal regions using high dimensional
generalizations of the Szego theorem. The method works equally well for local
inhomogeneities of the order parameter and for external potentials.Comment: Final version to appear in Phys Rev
Partnership research with older people: moving towards making the rhetoric a reality
As nursing develops closer partnerships with older people in delivering care, it also needs to develop partnerships in order to create the knowledge base for practice in a way that challenges professional hegemony and empowers older people. However, the process of developing partnerships in research takes place against a background of academic research traditions and norms, which can present obstacles to collaboration. This paper is a reflection on the issues that have arisen in three projects where older people were involved in research at different levels, from sources of data to independent researchers. It points to some of the areas that need further exploration and development
Hybrid Quantum Cosmology: Combining Loop and Fock Quantizations
As a necessary step towards the extraction of realistic results from Loop
Quantum Cosmology, we analyze the physical consequences of including
inhomogeneities. We consider in detail the quantization of a gravitational
model in vacuo which possesses local degrees of freedom, namely, the linearly
polarized Gowdy cosmologies with the spatial topology of a three-torus. We
carry out a hybrid quantization which combines loop and Fock techniques. We
discuss the main aspects and results of this hybrid quantization, which include
the resolution of the cosmological singularity, the polymeric quantization of
the internal time, a rigorous definition of the quantum constraints and the
construction of their solutions, the Hilbert structure of the physical states,
and the recovery of a conventional Fock quantization for the inhomogeneities.Comment: 24 pages, published in International Journal of Modern Physics A,
Special Issue: Proceedings of the Second Workshop on Quantum Gravity and
Noncommutative Geometry (Lisbon, Portugal
Simplicity of extremal eigenvalues of the Klein-Gordon equation
We consider the spectral problem associated with the Klein-Gordon equation
for unbounded electric potentials. If the spectrum of this problem is contained
in two disjoint real intervals and the two inner boundary points are
eigenvalues, we show that these extremal eigenvalues are simple and possess
strictly positive eigenfunctions. Examples of electric potentials satisfying
these assumptions are given
Multiparticle Schrodinger operators with point interactions in the plane
We study a system of N bosons in the plane interacting with delta function
potentials. After a coupling constant renormalization we show that the
Hamiltonian defines a self-adjoint operator and obtain a lower bound for the
energy. The same results hold if one includes a regular inter-particle
potential.Comment: 17 pages, Late
Temporal Ordering in Quantum Mechanics
We examine the measurability of the temporal ordering of two events, as well
as event coincidences. In classical mechanics, a measurement of the
order-of-arrival of two particles is shown to be equivalent to a measurement
involving only one particle (in higher dimensions). In quantum mechanics, we
find that diffraction effects introduce a minimum inaccuracy to which the
temporal order-of-arrival can be determined unambiguously. The minimum
inaccuracy of the measurement is given by dt=1/E where E is the total kinetic
energy of the two particles. Similar restrictions apply to the case of
coincidence measurements. We show that these limitations are much weaker than
limitations on measuring the time-of-arrival of a particle to a fixed location.Comment: New section added, arguing that order-of-arrival can be measured more
accurately than time-of-arrival. To appear in Journal of Physics
Asymptotics of large eigenvalues for a class of band matrices
We investigate the asymptotic behaviour of large eigenvalues for a class of
finite difference self-adjoint operators with compact resolvent in
On the existence of impurity bound excitons in one-dimensional systems with zero range interactions
We consider a three-body one-dimensional Schr\"odinger operator with zero
range potentials, which models a positive impurity with charge
interacting with an exciton. We study the existence of discrete eigenvalues as
is varied. On one hand, we show that for sufficiently small
there exists a unique bound state whose binding energy behaves like ,
and we explicitly compute its leading coefficient. On the other hand, if
is larger than some critical value then the system has no bound
states
Long-Time Dynamics of Variable Coefficient mKdV Solitary Waves
We study the Korteweg-de Vries-type equation dt u=-dx(dx^2 u+f(u)-B(t,x)u),
where B is a small and bounded, slowly varying function and f is a
nonlinearity. Many variable coefficient KdV-type equations can be rescaled into
this equation. We study the long time behaviour of solutions with initial
conditions close to a stable, B=0 solitary wave. We prove that for long time
intervals, such solutions have the form of the solitary wave, whose centre and
scale evolve according to a certain dynamical law involving the function
B(t,x), plus an H^1-small fluctuation.Comment: 19 page
- âŠ