54 research outputs found

    Management of Diabetic Bacterial Foot Infections with Organic Extracts of Liverwort Marchantia debilis from Cameroon

    Get PDF
    Diabetic bacterial foot infections (DBFIs) are limb-threatening complications in patients with diabetes mellitus, accounting for 50% of diabetes related lower limb amputations in developing countries, representing approximately 20 percent of all diabetes-related hospital admissions with significant healthcare-related costs involved. The widespread problem of bacterial resistance to most commonly used antibiotics places a huge economic burden on the healthcare system, with both increased morbidity and mortality among diabetic patients with foot infections. In this study, the antibacterial activity of organic extracts of the fresh liverwort Marchantia debilis from the North West Region of Cameroon is reported. An exit pool system, where patients presenting with DBFIs consented to be involved in the use of phytomedicines, after long term treatment of ulcers with antibiotics and not yielding significant long term benefit, presented themselves at the Phytobiotechnology Research clinic (PRF). Continuous culture of swabs from foot and toe wounds from 30 infected patients on nutrient agar and MacConkey agars in triplicate as well as Gram stain microscopy, revealed the presence of Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis and Bacillus species. Light petroleum and methanol extracts of the whole bryophyte plants at 100% concentration were tested. In vitro inhibition of the tested bacterial isolates from the diabetic foot ulcers by M debilis was observed only with the light petroleum extract. No inhibition by the extracts was observed for the Pseudomonas aeruginosa isolate. The light petroleum extract of M debilis was formulated into a petroleum oil based cream named BryoCream (TM). This was administered to 20 of the patients with 90% cure rate in a three week time period. The main nonpolar components were determined by GCMS as lepidozene and beta-barbatene, and by NMR. as stigmasterol and beta-sitosterol. In conclusion, nonpolar extracts from bryophytes from Cameroon could, potentially, be used to treat diabetic bacterial foot infections

    The present status of Bazzania curvidens Steph. (Lepidoziaceae)

    Get PDF
    Based on study of the types and additional specimens of the Madagascan Bazzania curvidens Steph. is proposed to be included as a subspecies under Bazzania decrescens (Lehm. et Lindb.) Trevis

    Heat shock-induced phosphorylation of TAR DNA-binding protein 43 (TDP-43) by MAPK/ERK kinase regulates TDP-43 function

    Get PDF
    TAR DNA-binding protein (TDP-43) is a highly conserved and essential DNA- and RNA-binding protein that controls gene expression through RNA processing, in particular, regulation of splicing. Intracellular aggregation of TDP-43 is a hallmark of amyotrophic lateral sclerosis and ubiquitin-positive frontotemporal lobar degeneration. This TDP-43 pathology is also present in other types of neurodegeneration including Alzheimer's disease. We report here that TDP-43 is a substrate of MEK, a central kinase in the MAPK/ERK signaling pathway. TDP-43 dual phosphorylation by MEK, at threonine 153 and tyrosine 155 (p-T153/Y155), was dramatically increased by the heat shock response (HSR) in human cells. HSR promotes cell survival under proteotoxic conditions by maintaining protein homeostasis and preventing protein misfolding. MEK is activated by HSR and contributes to the regulation of proteome stability. Phosphorylated TDP-43 was not associated with TDP-43 aggregation, and p-T153/Y155 remained soluble under conditions that promote protein misfolding. We found that active MEK significantly alters TDP-43-regulated splicing and that phosphomimetic substitutions at these two residues reduce binding to GU-rich RNA. Cellular imaging using a phospho-specific p-T153/Y155 antibody showed that phosphorylated TDP-43 was specifically recruited to the nucleoli, suggesting that p-T153/Y155 regulates a previously unappreciated function of TDP-43 in the processing of nucleolar-associated RNA. These findings highlight a new mechanism that regulates TDP-43 function and homeostasis through phosphorylation and, therefore, may contribute to the development of strategies to prevent TDP-43 aggregation and to uncover previously unexplored roles of TDP-43 in cell metabolism

    Management of Diabetic Bacterial Foot Infections with Organic Extracts of Liverwort Marchantia debilis from Cameroon

    Get PDF
    Diabetic bacterial foot infections (DBFIs) are limb-threatening complications in patients with diabetes mellitus, accounting for 50% of diabetes related lower limb amputations in developing countries, representing approximately 20 percent of all diabetes-related hospital admissions with significant healthcare-related costs involved. The widespread problem of bacterial resistance to most commonly used antibiotics places a huge economic burden on the healthcare system, with both increased morbidity and mortality among diabetic patients with foot infections. In this study, the antibacterial activity of organic extracts of the fresh liverwort Marchantia debilis from the North West Region of Cameroon is reported. An exit pool system, where patients presenting with DBFIs consented to be involved in the use of phytomedicines, after long term treatment of ulcers with antibiotics and not yielding significant long term benefit, presented themselves at the Phytobiotechnology Research clinic (PRF). Continuous culture of swabs from foot and toe wounds from 30 infected patients on nutrient agar and MacConkey agars in triplicate as well as Gram stain microscopy, revealed the presence of Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Proteus mirabilis and Bacillus species. Light petroleum and methanol extracts of the whole bryophyte plants at 100% concentration were tested. In vitro inhibition of the tested bacterial isolates from the diabetic foot ulcers by M debilis was observed only with the light petroleum extract. No inhibition by the extracts was observed for the Pseudomonas aeruginosa isolate. The light petroleum extract of M debilis was formulated into a petroleum oil based cream named BryoCream (TM). This was administered to 20 of the patients with 90% cure rate in a three week time period. The main nonpolar components were determined by GCMS as lepidozene and beta-barbatene, and by NMR. as stigmasterol and beta-sitosterol. In conclusion, nonpolar extracts from bryophytes from Cameroon could, potentially, be used to treat diabetic bacterial foot infections

    A SURVEY OF MARCHANTIALES FROM MADAGASCAR

    Get PDF
    Based on the authors’ recent collections and on older herbarium specimens (PC, TAN, EGR), the species of Marchantiidae (Marchantiopsida, Marchantiophyta) of Madagascar are reported with their description based on Malagasy specimens. A distribution map for each taxon is provided. Among the fifteen taxa identified, six are newly recorded for the island, including a new synonymy: Asterella coronata (Steph.) H.A.Mill = Asterella bachmannii (Steph.) S.W. Arnell. Most of Marchantiidae live in xeric areas (Riccia species, Exormotheca pustulosa Mitt.) or in exposed, only temporarily wet stations (Plagiochasma, Asterella). This preliminary study shows the evidence of under-prospection of such areas in Madagascar for bryophytes and the need of taxonomic work to clarify some genera (Riccia, Asterella, Plagiochasma) and to confirm the species hitherto reported

    Checklist and distribution of the liverworts of the Andasibe (Périnet) region (Madagascar)

    Get PDF
    This updated checklist of Marchantiophyta (liverworts) of Andasibé (Périnet) region, Madagascar was compiled from the literature, from herbarium specimens and recent collections. A total of 222 species including 9 infraspecific taxa, from 62 genera are recorded. Five species: Cheilolejeunea ngongensis Malombe et Pócs, Cheilolejeunea unciloba (Lindenb.) Malombe, Heteroscyphus grandistipus (Steph.) Schiffn., Lejeunea angulifolia Mitt. and Kymatocalyx africanus Vána et Wigginton are newly reported for Madagascar. Detailed informations on species occurrences are provided as a basis for subsequent research on species distributions and conservation

    <I>Riccardia regnellii</I>, an older name for <I>R. amazonica</I> (Marchantiophyta: Aneuraceae)

    No full text
    Riccardia amazonica is one of the most widespread tropical species in the genus Riccardia, occurring on soil, shaded rock and rotten wood in lowland and montane rainforests throughout tropical South America. A study of type specimens shows that the name R. amazonica should be replaced by R. regnellii. The latter species has been confused with R. sprucei. Riccardia regnellii is a further example of a Riccardia species that can be monoicous or dioicous. African specimens identified as R. amazonica do not belong to this species; the correct name for the African plants is R. longispica. Riccardia regnellii is lectotypified.</p
    corecore