708 research outputs found

    Spin-Dependent Electron Scattering from Polarized Protons and Deuterons with the BLAST Experiment at MIT-Bates

    Get PDF
    The Bates Large Acceptance Spectrometer Toroid (BLAST) experiment was operated at the MIT-Bates Linear Accelerator Center from 2003 until 2005. The experiment was designed to exploit the power of a polarized electron beam incident on polarized targets of hydrogen and deuterium to measure, in a systematic manner, the neutron, proton, and deuteron form factors as well as other aspects of the electromagnetic interaction on few-nucleon systems. We briefly describe the experiment, and present and discuss the numerous results obtained.United States. Dept. of EnergyNational Science Foundation (U.S.

    A Large Solid Angle Study of Pion Absorption on He3

    Full text link
    Measurements have been made of pi+ absorption on He3 at T_pi+ = 118, 162, and 239 MeV using the Large Acceptance Detector System (LADS). The nearly 4pi solid angle coverage of this detector minimizes uncertainties associated with extrapolations over unmeasured regions of phase space. The total absorption cross section is reported. In addition, the total cross section is divided into components in which only two or all three nucleons play a significant role in the process. These are the first direct measurements of the total and three nucleon absorption cross sections.Comment: 8 pages, LaTeX. 3 figures, anonymous ftp MITLNS.MIT.EDU, cd LADS. Submitted to PRL. PSI-PR-94-11 (Paul Scherrer Institute) and LNS 94-56 (MIT Lab. for Nucl. Sci.

    Measurement of the proton electric to magnetic form factor ratio from \vec ^1H(\vec e, e'p)

    Full text link
    We report the first precision measurement of the proton electric to magnetic form factor ratio from spin-dependent elastic scattering of longitudinally polarized electrons from a polarized hydrogen internal gas target. The measurement was performed at the MIT-Bates South Hall Ring over a range of four-momentum transfer squared Q2Q^2 from 0.15 to 0.65 (GeV/c)2^2. Significantly improved results on the proton electric and magnetic form factors are obtained in combination with previous cross-section data on elastic electron-proton scattering in the same Q2Q^2 region.Comment: 4 pages, 2 figures, submitted to PR

    Using Q Methodology in Agricultural Communications Research: A Philosophical Study

    Get PDF
    Communication rests on human experience and the uniqueness of subjectivity. Varying research methods and designs measure subjectivity, but few measure subjectivity using rigorous statistical analysis. Q methodology offers such design and rigor. Yet, agricultural communications has been slow to adopt Q methodology. Therefore, the purpose of this philosophical study was to establish a contextual and philosophical understanding of Q methodology and articulate its uses in agricultural communications research. This philosophical study was without traditional research design and methods. Thus, knowledge gained from the literature and best practices were synthesized with the intent of creating a discussion of the philosophies, concepts, and application of Q methodology. To conduct human subjectivity research, Stephenson proposed Q-methodology. It uses a small number of participants to represent the variance of perspectives about a topic. By focusing on and capturing the holistic perspectives of participants, knowledge bases and understandings of humanistic elements within agricultural communications could be enhanced. Benefits of Q methodology include harnessing subjectivity as a means for testing ideas and characterizing perspectives about an idea, limiting researcher bias, and gaining meaningful data from fewer participants. Challenges include misconceptions and misinterpretations related to terminology, concourse development, and generalizability. Agricultural communications depends on human experience and subjectivity related to food and fiber production. Thus, implementing Q methodology research into the agricultural communications discipline diversifies the research toolbox and provides researchers and practitioners with opportunities to explore perspectives related to diverse agricultural issues

    The Charge Form Factor of the Neutron at Low Momentum Transfer from the 2H(e,en)p^{2}\vec{\rm H}(\vec{\rm e},{\rm e}'{\rm n}){\rm p} Reaction

    Full text link
    We report new measurements of the neutron charge form factor at low momentum transfer using quasielastic electrodisintegration of the deuteron. Longitudinally polarized electrons at an energy of 850 MeV were scattered from an isotopically pure, highly polarized deuterium gas target. The scattered electrons and coincident neutrons were measured by the Bates Large Acceptance Spectrometer Toroid (BLAST) detector. The neutron form factor ratio GEn/GMnG^{n}_{E}/G^{n}_{M} was extracted from the beam-target vector asymmetry AedVA_{ed}^{V} at four-momentum transfers Q2=0.14Q^{2}=0.14, 0.20, 0.29 and 0.42 (GeV/c)2^{2}.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Let

    Sensitivity of a tonne-scale NEXT detector for neutrinoless double beta decay searches

    Full text link
    The Neutrino Experiment with a Xenon TPC (NEXT) searches for the neutrinoless double-beta decay of Xe-136 using high-pressure xenon gas TPCs with electroluminescent amplification. A scaled-up version of this technology with about 1 tonne of enriched xenon could reach in less than 5 years of operation a sensitivity to the half-life of neutrinoless double-beta decay decay better than 1E27 years, improving the current limits by at least one order of magnitude. This prediction is based on a well-understood background model dominated by radiogenic sources. The detector concept presented here represents a first step on a compelling path towards sensitivity to the parameter space defined by the inverted ordering of neutrino masses, and beyond.Comment: 22 pages, 11 figure
    corecore