8,411 research outputs found

    Theoretical studies of Si and GaAs surfaces and initial steps in the oxidation

    Get PDF
    Using ab initio quantum chemical methods (generalized valence bond), we examine (i) the electronic states of Si (111) and GaAs (110) surface, (ii) the relaxation of the Si (111) surface, (iii) the reconstruction of the GaAs surface, (iv) the initial steps in the chemisorption of O_2 on Si (111), and (v) the bonding of O atom to Ga and As centers

    Optimized sound diffusers based on sonic crystals using a multiobjective evolutionary algorithm

    Full text link
    Sonic crystals have been demonstrated to be good candidates to substitute for conventional diffusers in order to overcome the need for extremely thick structures when low frequencies have to be scattered, however, their performance is limited to a narrow band. In this work, multiobjective evolutionary algorithms are used to extend the bandwidth to the whole low frequency range. The results show that diffusion can be significantly increased. Several cost functions are considered in the paper, on the one hand to illustrate the flexibility of the optimization and on the other hand to demonstrate the problems associated with the use of certain cost functions. A study of the robustness of the optimized diffusers is also presented, introducing a parameter that can help to choose among the best candidates. Finally, the advantages of the use of multiobjective optimization in comparison with conventional optimizations are discussed.This work was partially supported by the Spanish "Ministerio de Economia y Competitividad" under the projects TEC2015-68076-R and DPI2015-71443-R.Redondo, J.; Sánchez Pérez, JV.; Blasco, X.; Herrero Durá, JM.; Vorlander, M. (2016). Optimized sound diffusers based on sonic crystals using a multiobjective evolutionary algorithm. Journal of the Acoustical Society of America. 139(5):2807-2814. doi:10.1121/1.4948580S28072814139

    Phenomenological Models of Socio-Economic Network Dynamics

    Full text link
    We study a general set of models of social network evolution and dynamics. The models consist of both a dynamics on the network and evolution of the network. Links are formed preferentially between 'similar' nodes, where the similarity is defined by the particular process taking place on the network. The interplay between the two processes produces phase transitions and hysteresis, as seen using numerical simulations for three specific processes. We obtain analytic results using mean field approximations, and for a particular case we derive an exact solution for the network. In common with real-world social networks, we find coexistence of high and low connectivity phases and history dependence.Comment: 11 pages, 8 figure

    A Light Calibration System for the ProtoDUNE-DP Detector

    Full text link
    A LED-based fiber calibration system for the ProtoDUNE-Dual Phase (DP) photon detection system (PDS) has been designed and validated. ProtoDUNE-DP is a 6x6x6 m3 liquid argon time-projection-chamber currently being installed at the Neutrino Platform at CERN. The PDS is based on 36 8-inch photomultiplier tubes (PMTs) and will allow triggering on cosmic rays. The system serves as prototype for the PDS of the final DUNE DP far detector in which the PDS also has the function to allow the 3D event reconstruction on non-beam physics. For this purpose an equalized PMT response is desirable to allow using the same threshold definition for all PMT groups, simplifying the determination of the trigger efficiency. The light calibration system described in this paper is developed to provide this and to monitor the PMT performance in-situ.Comment: 15 pages, 5 figure

    Search for hidden-photon dark matter with the FUNK experiment

    Full text link
    Many extensions of the Standard Model of particle physics predict a parallel sector of a new U(1) symmetry, giving rise to hidden photons. These hidden photons are candidate particles for cold dark matter. They are expected to kinetically mix with regular photons, which leads to a tiny oscillating electric-field component accompanying dark matter particles. A conducting surface can convert such dark matter particles into photons which are emitted almost perpendicularly to the surface. The corresponding photon frequency follows from the mass of the hidden photons. In this contribution we present a preliminary result on a hidden photon search in the visible and near-UV wavelength range that was done with a large, 14 m2 spherical metallic mirror and discuss future dark matter searches in the eV and sub-eV range by application of different detectors for electromagnetic radiation.Comment: Contribution to the 35th International Cosmic Ray Conference ICRC2017, 10 to 20 July, 2017, Bexco, Busan, Korea. arXiv admin note: text overlap with arXiv:1711.0296
    • …
    corecore