233 research outputs found

    Peripheral Tolerance of CD8 T Lymphocytes

    Get PDF
    SummaryWhereas high-avidity recognition of peptide-MHC complexes by developing T cells in the thymus results in deletion and promotes self-tolerance, such recognition by mature T cells in the periphery results in activation and clonal expansion. This dichotomy represents the basis of a dilemma that has stumped immunologists for many years, how are self-specific T cells tolerized in the periphery? There appear to be two important criteria used to achieve this goal. The first is that in the absence of inflammatory pathogens, tolerance is promoted when T cells recognize antigen presented by quiescent dendritic cells (DCs) expressing low levels of costimulatory molecules. A second critical factor that defines “self” and drives tolerance through deletion, anergy, or suppression is the persistence of antigen

    Developing an enhanced 7-color multiplex IHC protocol to dissect immune infiltration in human cancers.

    Get PDF
    The TSA Opal multiplex immunohistochemistry (mIHC) protocol (PerkinElmer) has been used to characterize immune infiltration in human cancers. This technique allows multiple biomarkers to be simultaneously stained in a single tissue section, which helps to elucidate the spatial relationship among individual cell types. We developed and optimized two improved mIHC protocols for a 7-color panel containing 6 biomarkers (CD3, CD8, CD163, PD-L1, FoxP3, and cytokeratin (CK)) and DAPI. The only difference between these two protocols was the staining sequence of those 6 biomarkers as the first sequence is PD-L1/CD163/CD8/CK/CD3/FoxP3/DAPI and the second sequence is FoxP3/CD163/CD8/CK/CD3/PD-L1/DAPI. By comparing PD-L1/FoxP3 staining in mIHC and singleplex PD-L1/FoxP3 staining on the adjacent slide, we demonstrated that the staining sequence does not affect the staining intensity of individual biomarkers as long as a proper antigen retrieval method was used. Our study suggests that use of an antigen retrieval buffer with higher pH value (such as Tris-EDTA pH9.0) than that of the stripping buffers (such as citrate buffer pH6.0) is helpful when using this advanced mIHC method to develop panels with multiple biomarkers. Otherwise, individual biomarkers may exhibit different intensities when the staining sequence is changed. By using this protocol, we characterized immune infiltration and PD-L1 expression in head and neck squamous cell carcinoma (HNSCC), breast cancer (BCa), and non-small cell lung cancer (NSCLC) specimens. We observed a statistically significant increase in CD3+ cell populations within the stroma of NSCLC as compared to BCa and increased PD-L1+ tumor cells in HNSCC as opposed to BCa

    Whole genome sequencing of Plasmodium falciparum from dried blood spots using selective whole genome amplification

    Get PDF
    BACKGROUND: Translating genomic technologies into healthcare applications for the malaria parasite Plasmodium falciparum has been limited by the technical and logistical difficulties of obtaining high quality clinical samples from the field. Sampling by dried blood spot (DBS) finger-pricks can be performed safely and efficiently with minimal resource and storage requirements compared with venous blood (VB). Here, the use of selective whole genome amplification (sWGA) to sequence the P. falciparum genome from clinical DBS samples was evaluated, and the results compared with current methods that use leucodepleted VB. METHODS: Parasite DNA with high (>95%) human DNA contamination was selectively amplified by Phi29 polymerase using short oligonucleotide probes of 8-12 mers as primers. These primers were selected on the basis of their differential frequency of binding the desired (P. falciparum DNA) and contaminating (human) genomes. RESULTS: Using sWGA method, clinical samples from 156 malaria patients, including 120 paired samples for head-to-head comparison of DBS and leucodepleted VB were sequenced. Greater than 18-fold enrichment of P. falciparum DNA was achieved from DBS extracts. The parasitaemia threshold to achieve >5× coverage for 50% of the genome was 0.03% (40 parasites per 200 white blood cells). Over 99% SNP concordance between VB and DBS samples was achieved after excluding missing calls. CONCLUSION: The sWGA methods described here provide a reliable and scalable way of generating P. falciparum genome sequence data from DBS samples. The current data indicate that it will be possible to get good quality sequence on most if not all drug resistance loci from the majority of symptomatic malaria patients. This technique overcomes a major limiting factor in P. falciparum genome sequencing from field samples, and paves the way for large-scale epidemiological applications

    Multiplex immunofluorescence to measure dynamic changes in tumor-infiltrating lymphocytes and PD-L1 in early-stage breast cancer.

    Get PDF
    BACKGROUND: The H&E stromal tumor-infiltrating lymphocyte (sTIL) score and programmed death ligand 1 (PD-L1) SP142 immunohistochemistry assay are prognostic and predictive in early-stage breast cancer, but are operator-dependent and may have insufficient precision to characterize dynamic changes in sTILs/PD-L1 in the context of clinical research. We illustrate how multiplex immunofluorescence (mIF) combined with statistical modeling can be used to precisely estimate dynamic changes in sTIL score, PD-L1 expression, and other immune variables from a single paraffin-embedded slide, thus enabling comprehensive characterization of activity of novel immunotherapy agents. METHODS: Serial tissue was obtained from a recent clinical trial evaluating loco-regional cytokine delivery as a strategy to promote immune cell infiltration and activation in breast tumors. Pre-treatment biopsies and post-treatment tumor resections were analyzed by mIF (PerkinElmer Vectra) using an antibody panel that characterized tumor cells (cytokeratin-positive), immune cells (CD3, CD8, CD163, FoxP3), and PD-L1 expression. mIF estimates of sTIL score and PD-L1 expression were compared to the H&E/SP142 clinical assays. Hierarchical linear modeling was utilized to compare pre- and post-treatment immune cell expression, account for correlation of time-dependent measurement, variation across high-powered magnification views within each subject, and variation between subjects. Simulation methods (Monte Carlo, bootstrapping) were used to evaluate the impact of model and tissue sample size on statistical power. RESULTS: mIF estimates of sTIL and PD-L1 expression were strongly correlated with their respective clinical assays (p \u3c .001). Hierarchical linear modeling resulted in more precise estimates of treatment-related increases in sTIL, PD-L1, and other metrics such as CD8+ tumor nest infiltration. Statistical precision was dependent on adequate tissue sampling, with at least 15 high-powered fields recommended per specimen. Compared to conventional t-testing of means, hierarchical linear modeling was associated with substantial reductions in enrollment size required (n = 25➔n = 13) to detect the observed increases in sTIL/PD-L1. CONCLUSION: mIF is useful for quantifying treatment-related dynamic changes in sTILs/PD-L1 and is concordant with clinical assays, but with greater precision. Hierarchical linear modeling can mitigate the effects of intratumoral heterogeneity on immune cell count estimations, allowing for more efficient detection of treatment-related pharmocodynamic effects in the context of clinical trials. TRIAL REGISTRATION: NCT02950259
    • …
    corecore