24 research outputs found

    Top-view Trajectories: A Pedestrian Dataset of Vehicle-Crowd Interaction from Controlled Experiments and Crowded Campus

    Full text link
    Predicting the collective motion of a group of pedestrians (a crowd) under the vehicle influence is essential for the development of autonomous vehicles to deal with mixed urban scenarios where interpersonal interaction and vehicle-crowd interaction (VCI) are significant. This usually requires a model that can describe individual pedestrian motion under the influence of nearby pedestrians and the vehicle. This study proposed two pedestrian trajectory datasets, CITR dataset and DUT dataset, so that the pedestrian motion models can be further calibrated and verified, especially when vehicle influence on pedestrians plays an important role. CITR dataset consists of experimentally designed fundamental VCI scenarios (front, back, and lateral VCIs) and provides unique ID for each pedestrian, which is suitable for exploring a specific aspect of VCI. DUT dataset gives two ordinary and natural VCI scenarios in crowded university campus, which can be used for more general purpose VCI exploration. The trajectories of pedestrians, as well as vehicles, were extracted by processing video frames that come from a down-facing camera mounted on a hovering drone as the recording equipment. The final trajectories of pedestrians and vehicles were refined by Kalman filters with linear point-mass model and nonlinear bicycle model, respectively, in which xy-velocity of pedestrians and longitudinal speed and orientation of vehicles were estimated. The statistics of the velocity magnitude distribution demonstrated the validity of the proposed dataset. In total, there are approximate 340 pedestrian trajectories in CITR dataset and 1793 pedestrian trajectories in DUT dataset. The dataset is available at GitHub.Comment: This paper was accepted into the 30th IEEE Intelligent Vehicles Symposium. Personal use of this material is permitted. Permission from IEEE must be obtained for all other use

    Top-view Trajectories: A Pedestrian Dataset of Vehicle-Crowd Interaction from Controlled Experiments and Crowded Campus

    Full text link
    Predicting the collective motion of a group of pedestrians (a crowd) under the vehicle influence is essential for the development of autonomous vehicles to deal with mixed urban scenarios where interpersonal interaction and vehicle-crowd interaction (VCI) are significant. This usually requires a model that can describe individual pedestrian motion under the influence of nearby pedestrians and the vehicle. This study proposed two pedestrian trajectory datasets, CITR dataset and DUT dataset, so that the pedestrian motion models can be further calibrated and verified, especially when vehicle influence on pedestrians plays an important role. CITR dataset consists of experimentally designed fundamental VCI scenarios (front, back, and lateral VCIs) and provides unique ID for each pedestrian, which is suitable for exploring a specific aspect of VCI. DUT dataset gives two ordinary and natural VCI scenarios in crowded university campus, which can be used for more general purpose VCI exploration. The trajectories of pedestrians, as well as vehicles, were extracted by processing video frames that come from a down-facing camera mounted on a hovering drone as the recording equipment. The final trajectories of pedestrians and vehicles were refined by Kalman filters with linear point-mass model and nonlinear bicycle model, respectively, in which xy-velocity of pedestrians and longitudinal speed and orientation of vehicles were estimated. The statistics of the velocity magnitude distribution demonstrated the validity of the proposed dataset. In total, there are approximate 340 pedestrian trajectories in CITR dataset and 1793 pedestrian trajectories in DUT dataset. The dataset is available at GitHub.Comment: This paper was accepted into the 30th IEEE Intelligent Vehicles Symposium. Personal use of this material is permitted. Permission from IEEE must be obtained for all other use

    Blending Generative Adversarial Image Synthesis with Rendering for Computer Graphics

    Full text link
    Conventional computer graphics pipelines require detailed 3D models, meshes, textures, and rendering engines to generate 2D images from 3D scenes. These processes are labor-intensive. We introduce Hybrid Neural Computer Graphics (HNCG) as an alternative. The contribution is a novel image formation strategy to reduce the 3D model and texture complexity of computer graphics pipelines. Our main idea is straightforward: Given a 3D scene, render only important objects of interest and use generative adversarial processes for synthesizing the rest of the image. To this end, we propose a novel image formation strategy to form 2D semantic images from 3D scenery consisting of simple object models without textures. These semantic images are then converted into photo-realistic RGB images with a state-of-the-art conditional Generative Adversarial Network (cGAN) based image synthesizer trained on real-world data. Meanwhile, objects of interest are rendered using a physics-based graphics engine. This is necessary as we want to have full control over the appearance of objects of interest. Finally, the partially-rendered and cGAN synthesized images are blended with a blending GAN. We show that the proposed framework outperforms conventional rendering with ablation and comparison studies. Semantic retention and Fr\'echet Inception Distance (FID) measurements were used as the main performance metrics
    corecore