2,879 research outputs found

    The canonical effect in statistical models for relativistic heavy ion collisions

    Get PDF
    Enforcing exact conservation laws instead of average ones in statistical thermal models for relativistic heavy ion reactions gives raise to so called canonical effect, which can be used to explain some enhancement effects when going from elementary (e.g. pp) or small (pA) systems towards large AA systems. We review the recently developed method for computation of canonical statistical thermodynamics, and give an insight when this is needed in analysis of experimental data.Comment: 4 pages, 3 figures. Talk given in Strangeness in Quark Matter, Frankfurt am Main 2001. Submitted to J. Phys. G: Nucl. Part. Phy

    Group projection method in statistical systems

    Get PDF
    We discuss an application of group theoretical methods to the formulation of the thermodynamics of systems constrained by the conservation laws described by a semi--simple compact Lie group. A general projection method that allows to construct a partition function for a given irreducible representation of the Lie group is outlined. Applications of the method in Lattice Gauge Theory (LGT) for non--zero baryon number and in the phenomenological description of particle production in ultrarelativistic heavy ion collisions are also indicated.Comment: Invited talk presented at the XXIV International Colloquium on Group Theoritical Methods in Physic

    Heavy ion collisions and lattice QCD at finite baryon density

    Full text link
    We discuss a relation between the QCD thermodynamics obtained from a statistical analysis of particle production in heavy ion collisions at SPS and RHIC energies and recent LGT results at finite chemical potential. We show that basic thermodynamic properties obtained from the phenomenological statistical operator of a hadron resonance gas that describes particle yields in heavy ion collisions are consistent with recent LGT results. We argue that for T≤TcT\leq T_c the equation of state derived from Monte--Carlo simulations of two quark--flavor QCD at finite chemical potential can be well described by a hadron resonance gas when using the same set of approximations as used in LGT calculations. We examine the influence of a finite quark mass on the position of the deconfinement transition in temperature and chemical potential plane.Comment: To appear in the proceedings of 17in International Conference on Ultra Relativistic Nucleus-Nucleus Collisions (Quark Matter 2004), Oakland, California, 11-17 Jan 200

    Charge fluctuations in chiral models and the QCD phase transition

    Full text link
    We consider the Polyakov loop-extended two flavor chiral quark--meson model and discuss critical phenomena related with the spontaneous breaking of the chiral symmetry. The model is explored beyond the mean-field approximation in the framework of the functional renormalisation group. We discuss properties of the net-quark number density fluctuations as well as their higher cumulants. We show that with the increasing net-quark number density, the higher order cumulants exhibit a strong sensitivity to the chiral crossover transition. We discuss their role as probes of the chiral phase transition in heavy-ion collisions at RHIC and LHC.Comment: 4 pages, 3 figures, to appear in the proceedings of Quark Matter 2011, 23-28 May 2011, Annecy, Franc

    On the chemical equilibration of strangeness-exchange reaction in heavy-ion collisions

    Full text link
    The strangeness-exchange reaction pi + Y -> K- + N is shown to be the dynamical origin of chemical equilibration for K- production in heavy-ion collisions up to beam energies of 10 A GeV. The hyperons occurring in this process are produced associately with K+ in baryon-baryon and meson-baryon interactions. This connection is demonstrated by the ratio K-/K+ which does not vary with centrality and shows a linear correlation with the yield of pions per participant. At incident energies above AGS this correlation no longer holds due to the change in the production mechanism of kaons.Comment: 9 pages, 4 figure

    Probing spatial homogeneity with LTB models: a detailed discussion

    Full text link
    Do current observational data confirm the assumptions of the cosmological principle, or is there statistical evidence for deviations from spatial homogeneity on large scales? To address these questions, we developed a flexible framework based on spherically symmetric, but radially inhomogeneous Lemaitre-Tolman-Bondi (LTB) models with synchronous Big Bang. We expanded the (local) matter density profile in terms of flexible interpolation schemes and orthonormal polynomials. A Monte Carlo technique in combination with recent observational data was used to systematically vary the shape of these profiles. In the first part of this article, we reconsider giant LTB voids without dark energy to investigate whether extremely fine-tuned mass profiles can reconcile these models with current data. While the local Hubble rate and supernovae can easily be fitted without dark energy, however, model-independent constraints from the Planck 2013 data require an unrealistically low local Hubble rate, which is strongly inconsistent with the observed value; this result agrees well with previous studies. In the second part, we explain why it seems natural to extend our framework by a non-zero cosmological constant, which then allows us to perform general tests of the cosmological principle. Moreover, these extended models facilitate explorating whether fluctuations in the local matter density profile might potentially alleviate the tension between local and global measurements of the Hubble rate, as derived from Cepheid-calibrated type Ia supernovae and CMB experiments, respectively. We show that current data provide no evidence for deviations from spatial homogeneity on large scales. More accurate constraints are required to ultimately confirm the validity of the cosmological principle, however.Comment: 18 pages, 12 figures, 2 tables; accepted for publication in A&
    • …
    corecore