125 research outputs found

    A search for muon neutrinos coincident with Gamma-ray Bursts with the IceCube 59-String detector

    Get PDF
    Gamma-Ray Bursts (GRBs) are believed to be prime candidates to produce the cosmic ray flux above 10^18 eV. Cosmic rays are deflected by galactic and inter-galactic magnetic fields and do not point back to their source, therefore cosmic ray observations cannot confirm or rule out GRBs as a source. Leading theories predict that if GRBs are indeed responsible for the highest energy cosmic rays, then they would produce a detectable TeV-scale neutrino flux in a km^3 sized neutrino detector. Neutrinos are not deflected by magnetic fields and point back to their source, making it possible to correlate a neutrino flux with its source. The detection of a neutrino flux from GRBs would be strong evidence that GRBs are a source of the highest energy cosmic rays. IceCube is the first km^3 sized neutrino detector in the world and is therefore sensitive to the predicted TeV neutrino flux from GRBs. The finished detector consists of 5160 light-sensitive Digital Optical Modules (DOM) arranged on 86 Strings. There are 60 DOMs on a single string deployed at depths between 1450 and 2450 meters below the surface. The first IceCube String was deployed during the South Pole summer of 2004-2005 with construction of the IceCube detector finishing during the austral summer of 2011. The results presented here are from the 59-string detector, which operated from May 2009 to May 2010. IceCube is able to detect charged particles moving through its instrumented volume near the speed of light by detecting the Cherenkov light given off by those charged particles. Muon and anti-muon neutrinos produce secondary muons if they interact with a nucleon. If this interaction happens in or near the instrumented volume IceCube can detect those secondary muons. By searching for a neutrino signal coincident in time and space with satellite detected gamma rays from GRBs, the analysis presented here pushes the sensitivity for neutrinos from GRBs to 0.46 times the theoretically predicted neutrino flux. The result is combined with the previous search and a combined 90% upper limit of 0.22 times the theoretical predicted flux is set. The implication of this stringent limit on the model is discussed and future IceCube sensitivities are outlined. IceCube is the largest neutrino detector in the world and with this result has entered the era of neutrino astrophysics by constraining long standing astrophysical neutrino production models

    Optimal embeddings by unbiased shifts of Brownian motion

    Get PDF
    An unbiased shift of the two-sided Brownian motion (Bt ⁣:tR)(B_t \colon t\in{\mathbb R}) is a random time TT such that (BT+t ⁣:tR)(B_{T+t} \colon t\in{\mathbb R}) is still a two-sided Brownian motion. Given a pair μ,ν\mu, \nu of orthogonal probability measures, an unbiased shift TT solves the embedding problem, if B0μB_0\sim\mu implies BTνB_{T}\sim\nu. A solution to this problem was given by Last et al. (2014), based on earlier work of Bertoin and Le Jan (1992), and Holroyd and Liggett (2001). In this note we show that this solution minimises Eψ(T){\mathbb E} \psi(T) over all nonnegative unbiased solutions TT, simultaneously for all nonnegative, concave functions ψ\psi. Our proof is based on a discrete concavity inequality that may be of independent interest.Comment: 10 page

    Skorokhod embeddings for two-sided Markov chains

    Get PDF
    Let (Xn ⁣:nZ)(X_n \colon n\in\Z) be a two-sided recurrent Markov chain with fixed initial state X0X_0 and let ν\nu be a probability measure on its state space. We give a necessary and sufficient criterion for the existence of a non-randomized time TT such that (XT+n ⁣:nZ)(X_{T+n} \colon n\in\Z) has the law of the same Markov chain with initial distribution ν\nu. In the case when our criterion is satisfied we give an explicit solution, which is also a stopping time, and study its moment properties. We show that this solution minimizes the expectation of ψ(T)\psi(T) in the class of all non-negative solutions, simultaneously for all non-negative concave functions ψ\psi.Comment: Revision has been made and some parts of the proof of Theorem 4 have been made cleare

    Exploiting Unfounded Sets for HEX-Program Evaluation

    Get PDF
    HEX programs extend logic programs with external computations through external atoms, whose answer sets are the minimal models of the Faber-Leone-Pfeifer-reduct. As already reasoning from Horn programs with nonmonotonic external atoms of polynomial complexity is on the second level of the polynomial hierarchy, answer set checking needs special attention; simply computing reducts and searching for smaller models does not scale well. We thus extend an approach based on unfounded sets to HEX and integrate it in a Conflict Driven Clause Learning framework for HEX program evaluation. It reduces the check to a search for unfounded sets, which is more efficiently implemented as a SAT problem. We give a basic encoding for HEX and show optimizations by additional clauses. Experiments show that the new approach significantly decreases runtime

    Understanding the dependence of mean precipitation on convective treatment and horizontal resolution in tropical aquachannel experiments

    Get PDF
    The Intertropical Convergence Zone (ITCZ) is a key circulation and precipitation feature in the tropics. There has been a large spread in the representation of the ITCZ in global weather and climate models for a long time, the reasons for which remain unclear. This paper presents a novel approach with which we disentangle different physical processes responsible for the changeable behavior of the ITCZ in numerical models. The diagnostic tool is based on a conceptual framework developed by Emanuel (2019) and allows for physically consistent estimates of convective mass flux and precipitation efficiency for simulations with explicit and parameterized convection. We apply our diagnostic tool to a set of tropical aquachannel experiments using the ICOsahedral Nonhydrostatic (ICON) model with horizontal grid spacings of 13 and 5 km and with various representations of deep and shallow convection. The channel length corresponds to the Earth\u27s circumference and has rigid walls at 30∘ N/S. Zonally symmetric sea surface temperatures are prescribed. All experiments simulate an ITCZ at the Equator coinciding with the ascending branch of the Hadley circulation and descending branches at 15∘ N/S with subtropical jets and easterly trade wind belts straddling the ITCZ. With explicit deep convection, however, rainfall in the ITCZ increases and the Hadley circulation becomes stronger. Increasing horizontal resolution substantially reduces the rainfall maximum in the ITCZ, while the strength of the Hadley circulation changes only marginally. Our diagnostic framework reveals that boundary-layer quasi-equilibrium (BLQE) is a key to physically understanding those differences. At 13 km, enhanced surface enthalpy fluxes with explicit deep convection are balanced by increased convective downdrafts. As precipitation efficiency is hardly affected, convective updrafts and rainfall increase. The surface enthalpy fluxes are mainly controlled by mean surface winds, closely linked to the Hadley circulation. These links also help understand rainfall differences between different resolutions. At 5 km, the wind–surface-fluxes–convection relation holds, but additionally explicit convection dries the mid-troposphere, which increases the import of air with lower moist static energy into the boundary layer, thereby enhancing surface fluxes. Overall, the different model configurations create little variations in precipitation efficiency and radiative cooling, the effects of which are compensated for by changes in dry stability. The results highlight the utility of our diagnostic tool to pinpoint processes important for rainfall differences between models, suggesting applicability for climate model intercomparison projects

    Mechanical Stimulation of Fibroblasts by Extracorporeal Shock Waves: Modulation of Cell Activation and Proliferation Through a Transient Proinflammatory Milieu

    Get PDF
    Extracorporeal shock waves (ESWTs) are "mechanical" waves, widely used in regenerative medicine, including soft tissue wound repair. Although already being used in the clinical practice, the mechanism of action underlying their biological activities is still not fully understood. In the present paper we tried to elucidate whether a proinflammatory effect may contribute to the regenerative potential of shock waves treatment. For this purpose, we exposed human foreskin fibroblasts (HFF1 cells) to an ESWT treatment (100 pulses using energy flux densities of 0.19 mJ/mm2 at 3 Hz), followed by cell analyses after 5 min, up to 48 h. We then evaluated cell proliferation, reactive oxygen species generation, ATP release, and cytokine production. Cells cultured in the presence of lipopolysaccharide (LPS), to induce inflammation, were used as a positive control, indicating that LPS-mediated induction of a proinflammatory pattern in HFF1 increased their proliferation. Here, we provide evidence that ESWTs affected fibroblast proliferation through the overexpression of selected cytokines involved in the establishment of a proinflammatory program, superimposable to what was observed in LPS-treated cells. The possibility that inflammatory circuits can be modulated by ESWT mechanotransduction may disclose novel hypothesis on their biological underpinning and expand the fields of their biomedical application

    Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT)

    Get PDF
    Adipose tissue is a rich and very convenient source of cells for regenerative medicine therapeutic approaches. However, a characterization of the population of adipose-derived stromal and stem cells (ASCs) with the greatest therapeutic potential remains unclear. Under the authority of International Federation of Adipose Therapeutics and International Society for Cellular Therapy, this paper sets out to establish minimal definitions of stromal cells both as uncultured stromal vascular fraction (SVF) and as an adherent stromal/stem cells population.Phenotypic and functional criteria for the identification of adipose-derived cells were drawn from the literature.In the SVF, cells are identified phenotypically by the following markers: CD45-CD235a-CD31-CD34+. Added value may be provided by both a viability marker and the following surface antigens: CD13, CD73, CD90 and CD105. The fibroblastoid colony-forming unit assay permits the evaluation of progenitor frequency in the SVF population. In culture, ASCs retain markers in common with other mesenchymal stromal/stem cells (MSCs), including CD90, CD73, CD105, and CD44 and remain negative for CD45 and CD31. They can be distinguished from bone-marrow-derived MSCs by their positivity for CD36 and negativity for CD106. The CFU-F assay is recommended to calculate population doublings capacity of ASCs. The adipocytic, chondroblastic and osteoblastic differentiation assays serve to complete the cell identification and potency assessment in conjunction with a quantitative evaluation of the differentiation either biochemically or by reverse transcription polymerase chain reaction.The goal of this paper is to provide initial guidance for the scientific community working with adipose-derived cells and to facilitate development of international standards based on reproducible parameters.Background aims: Adipose tissue is a rich and very convenient source of cells for regenerative medicine therapeutic approaches. However, a characterization of the population of adipose-derived stromal and stem cells (ASCs) with the greatest therapeutic potential remains unclear. Under the authority of International Federation of Adipose Therapeutics and International Society for Cellular Therapy, this paper sets out to establish minimal definitions of stromal cells both as uncultured stromal vascular fraction (SVF) and as an adherent stromal/stem cells population. Methods: Phenotypic and functional criteria for the identification of adipose-derived cells were drawn from the literature. Results: In the SVF, cells are identified phenotypically by the following markers: CD45-CD235a-CD31-CD34+. Added value may be provided by both a viability marker and the following surface antigens: CD13, CD73, CD90 and CD105. The fibroblastoid colony-forming unit assay permits the evaluation of progenitor frequency in the SVF population. In culture, ASCs retain markers in common with other mesenchymal stromal/stem cells (MSCs), including CD90, CD73, CD105, and CD44 and remain negative for CD45 and CD31. They can be distinguished from bone-marrow-derived MSCs by their positivity for CD36 and negativity for CD106. The CFU-F assay is recommended to calculate population doublings capacity of ASCs. The adipocytic, chondroblastic and osteoblastic differentiation assays serve to complete the cell identification and potency assessment in conjunction with a quantitative evaluation of the differentiation either biochemically or by reverse transcription polymerase chain reaction. Conclusions: The goal of this paper is to provide initial guidance for the scientific community working with adipose-derived cells and to facilitate development of international standards based on reproducible parameters. \ua9 2013, International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved
    corecore