1,198 research outputs found

    Performance of the CMS High Granularity Calorimeter prototype to charged pion beams of 20−-300 GeV/c

    Full text link
    The upgrade of the CMS experiment for the high luminosity operation of the LHC comprises the replacement of the current endcap calorimeter by a high granularity sampling calorimeter (HGCAL). The electromagnetic section of the HGCAL is based on silicon sensors interspersed between lead and copper (or copper tungsten) absorbers. The hadronic section uses layers of stainless steel as an absorbing medium and silicon sensors as an active medium in the regions of high radiation exposure, and scintillator tiles directly readout by silicon photomultipliers in the remaining regions. As part of the development of the detector and its readout electronic components, a section of a silicon-based HGCAL prototype detector along with a section of the CALICE AHCAL prototype was exposed to muons, electrons and charged pions in beam test experiments at the H2 beamline at the CERN SPS in October 2018. The AHCAL uses the same technology as foreseen for the HGCAL but with much finer longitudinal segmentation. The performance of the calorimeters in terms of energy response and resolution, longitudinal and transverse shower profiles is studied using negatively charged pions, and is compared to GEANT4 predictions. This is the first report summarizing results of hadronic showers measured by the HGCAL prototype using beam test data.Comment: To be submitted to JINS

    Measurement of Energy Correlators inside Jets and Determination of the Strong Coupling Formula Presented

    Get PDF
    Energy correlators that describe energy-weighted distances between two or three particles in a hadronic jet are measured using an event sample of s\sqrt{s}=13 TeV proton-proton collisions collected by the CMS experiment and corresponding to an integrated luminosity of 36.3 fb−1^{−1}. The measured distributions are consistent with the trends in the simulation that reveal two key features of the strong interaction: confinement and asymptotic freedom. By comparing the ratio of the measured three- and two-particle energy correlator distributions with theoretical calculations that resum collinear emissions at approximate next-to-next-to-leading-logarithmic accuracy matched to a next-to-leading-order calculation, the strong coupling is determined at the Z boson mass: αS_S (mZ_Z)=0.1229 0.0040−0.0050\frac{0.0040}{-0.0050} , the most precise αS_SmZ_Z value obtained using jet substructure observable

    Muon identification using multivariate techniques in the CMS experiment in proton-proton collisions at (s)=13\sqrt{(s)} = 13 TeV

    Get PDF
    The identification of prompt and isolated muons, as well as muons from heavy-flavour hadron decays, is an important task. We developed two multivariate techniques to provide highly efficient identification for muons with transverse momentum greater than 10 GeV. One provides a continuous variable as an alternative to a cut-based identification selection and offers a better discrimination power against misidentified muons. The other one selects prompt and isolated muons by using isolation requirements to reduce the contamination from nonprompt muons arising in heavy-flavour hadron decays. Both algorithms are developed using 59.7 fb−1^{-1} of proton-proton collisions data at a centre-of-mass energy of √(s)=13 TeV collected in 2018 with the CMS experiment at the CERN LHC

    Measurement of multijet azimuthal correlations and determination of the strong coupling in proton-proton collisions at s=13 TeV\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V}

    Get PDF
    A measurement is presented of a ratio observable that provides a measure of the azimuthal correlations among jets with large transverse momentum pT . This observable is measured in multijet events over the range of pT=360–3170 GeV based on data collected by the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 134 fb−1^{−1} . The results are compared with predictions from Monte Carlo parton-shower event generator simulations, as well as with fixed-order perturbative quantum chromodynamics (pQCD) predictions at next-to-leading-order (NLO) accuracy obtained with different parton distribution functions (PDFs) and corrected for nonperturbative and electroweak effects. Data and theory agree within uncertainties. From the comparison of the measured observable with the pQCD prediction obtained with the NNPDF3.1 NLO PDFs, the strong coupling at the Z boson mass scale is αS_S(mZ_Z) = 0.1177 ± 0.0013 (exp)+0.0116−0.0073\frac {+0.0116}{−0.0073} (theo) = 0.1177+0.0117−0.0074\frac {+0.0117}{−0.0074} , where the total uncertainty is dominated by the scale dependence of the fixed-order predictions. A test of the running of αS_S in the TeV region shows no deviation from the expected NLO pQCD behaviour

    Search for a vector-like quark Tâ€Č → tH via the diphoton decay mode of the Higgs boson in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    A search for the electroweak production of a vector-like quark Tâ€Č, decaying to a top quark and a Higgs boson is presented. The search is based on a sample of proton-proton collision events recorded at the LHC at = 13 TeV, corresponding to an integrated luminosity of 138 fb−1. This is the first Tâ€Č search that exploits the Higgs boson decay to a pair of photons. For narrow isospin singlet Tâ€Č states with masses up to 1.1 TeV, the excellent diphoton invariant mass resolution of 1–2% results in an increased sensitivity compared to previous searches based on the same production mechanism. The electroweak production of a Tâ€Č quark with mass up to 960 GeV is excluded at 95% confidence level, assuming a coupling strength ÎșT = 0.25 and a relative decay width Γ/MTâ€Č < 5%

    Search for high-mass exclusive γγ → WW and γγ → ZZ production in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF

    Search for long-lived particles decaying in the CMS muon detectors in proton-proton collisions at √s = 13 TeV

    Get PDF
    A search for long-lived particles (LLPs) decaying in the CMS muon detectors is presented. A data sample of proton-proton collisions at √=13  TeV corresponding to an integrated luminosity of 138  fb−1, recorded at the LHC in 2016–2018, is used. The decays of LLPs are reconstructed as high multiplicity clusters of hits in the muon detectors. In the context of twin Higgs models, the search is sensitive to LLP masses from 0.4 to 55 GeV and a broad range of LLP decay modes, including decays to hadrons, leptons, electrons, or photons. No excess of events above the standard model background is observed. The most stringent limits to date from LHC data are set on the branching fraction of the Higgs boson decay to a pair of LLPs with masses below 10 GeV. This search also provides the best limits for various intervals of LLP proper decay length and mass. Finally, this search sets the first limits at the LHC on a dark quantum chromodynamic sector whose particles couple to the Higgs boson through gluon, Higgs boson, photon, vector, and dark-photon portals, and is sensitive to branching fractions of the Higgs boson to dark quarks as low as 2×10−3

    Search for heavy neutral leptons in final states with electrons, muons, and hadronically decaying tau leptons in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    A search for heavy neutral leptons (HNLs) of Majorana or Dirac type using proton-proton collision data at = 13 TeV is presented. The data were collected by the CMS experiment at the CERN LHC and correspond to an integrated luminosity of 138 fb−1. Events with three charged leptons (electrons, muons, and hadronically decaying tau leptons) are selected, corresponding to HNL production in association with a charged lepton and decay of the HNL to two charged leptons and a standard model (SM) neutrino. The search is performed for HNL masses between 10 GeV and 1.5 TeV. No evidence for an HNL signal is observed in data. Upper limits at 95% confidence level are found for the squared coupling strength of the HNL to SM neutrinos, considering exclusive coupling of the HNL to a single SM neutrino generation, for both Majorana and Dirac HNLs. The limits exceed previously achieved experimental constraints for a wide range of HNL masses, and the limits on tau neutrino coupling scenarios with HNL masses above the W boson mass are presented for the first time

    Measurement of multijet azimuthal correlations and determination of the strong coupling in proton-proton collisions at s=13 TeV\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V}

    Get PDF
    A measurement is presented of a ratio observable that provides a measure of the azimuthal correlations among jets with large transverse momentum pT . This observable is measured in multijet events over the range of pT=360–3170 GeV based on data collected by the CMS experiment in proton-proton collisions at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 134 fb−1^{−1} . The results are compared with predictions from Monte Carlo parton-shower event generator simulations, as well as with fixed-order perturbative quantum chromodynamics (pQCD) predictions at next-to-leading-order (NLO) accuracy obtained with different parton distribution functions (PDFs) and corrected for nonperturbative and electroweak effects. Data and theory agree within uncertainties. From the comparison of the measured observable with the pQCD prediction obtained with the NNPDF3.1 NLO PDFs, the strong coupling at the Z boson mass scale is αS_S(mZ_Z) = 0.1177 ± 0.0013 (exp)+0.0116−0.0073\frac {+0.0116}{−0.0073} (theo) = 0.1177+0.0117−0.0074\frac {+0.0117}{−0.0074} , where the total uncertainty is dominated by the scale dependence of the fixed-order predictions. A test of the running of αS_S in the TeV region shows no deviation from the expected NLO pQCD behaviour

    Search for long-lived heavy neutral leptons with lepton flavour conserving or violating decays to a jet and a charged lepton

    Get PDF
    • 

    corecore