64 research outputs found

    Activation of stress-activated protein kinase in osteoarthritic cartilage: evidence for nitric oxide dependence

    Get PDF
    AbstractObjective We have demonstrated in bovine chondrocytes that nitric oxide (NO) mediates IL1 dependent apoptosis under conditions of oxidant stress. This process is accompanied by activation of c-Jun NH2-terminal kinase (JNK; also called stress-activated protein kinase). In these studies we examined activation of JNK in explant cultures of human osteoarthritic cartilage obtained at joint replacement surgery and we characterized the role of peroxynitrite to act as an upstream trigger.Design A novel technique to isolate chondrocyte proteins (<10% of total cartilage protein) from cartilage specimens was developed. It was used to analyse JNK activation by a western blot technique. To examine the hypothesis that chondrocyte JNK activation is a result of increased peroxynitrite, in vitro experiments were performed in which cultured chondrocytes were incubated with this oxidant.Results Activated JNK was detected in the cytoplasm of osteoarthritis (OA) affected chondrocytes but not in that of controls. In vitro, chondrocytes produce NO and superoxide anion. IL-1 (48h), which induces nitric oxide synthase, resulted in an activation of JNK; this effect was reversed by N-monomethylarginine (NMA). TNFα treated chondrocytes at 48h produce superoxide anion (EPR method). Exposure of cells to peroxynitrite led to an accumulation of intracellular oxidants, in association with JNK activation and cell death by apoptosis.Conclusion We suggest that JNK activation is among the IL-1 elicited responses that injure articular chondrocytes and this activation of JNK is dependent on intracellular oxidant formation (including NO peroxynitrite). In addition, the extraction technique here described is a novel method that permits the quantitation and study of proteins such as JNK involved in the signaling pathways of chondrocytes within osteoarthritic cartilage

    Sex differences in contaminant concentrations of fish: a synthesis

    Full text link
    Abstract A comparison of whole-fish polychlorinated biphenyl (PCB) and total mercury (Hg) concentrations in mature males with those in mature females may provide insights into sex differences in behavior, metabolism, and other physiological processes. In eight species of fish, we observed that males exceeded females in whole-fish PCB concentration by 17 to 43 %. Based on results from hypothesis testing, we concluded that these sex differences were most likely primarily driven by a higher rate of energy expenditure, stemming from higher resting metabolic rate (or standard metabolic rate (SMR)) and higher swimming activity, in males compared with females. A higher rate of energy expenditure led to a higher rate of food consumption, which, in turn, resulted in a higher rate of PCB accumulation. For two fish species, the growth dilution effect also made a substantial contribution to the sex difference in PCB concentrations, although the higher energy expenditure rate for males was still the primary driver. Hg concentration data were available for five of the eight species. For four of these five species, the ratio of PCB concentration in males to PCB concentration in females was substantially greater than the ratio of Hg concentration in males to Hg concentration in females. In sea lamprey (Petromyzon marinus), a very primitive fish, the two ratios were nearly identical. The most plausible explanation for this pattern was that certain androgens, such as testosterone and 11-ketotestosterone, enhanced Hg-elimination rate in males. In contrast, long-term elimination of PCBs is negligible for both sexes. According to this explanation, males not only ingest Hg at a higher rate than females but also eliminate Hg at a higher rate than females, in fish species other than sea lamprey. Male sea lamprey do not possess either of the above-specified androgens. These apparent sex differences in SMRs, activities, and Hg-elimination rates in teleost fishes may also apply, to some degree, to higher vertebrates including humans. Our synthesis findings will be useful in (1) developing sex-specific bioenergetics models for fish, (2) developing sex-specific risk assessment models for exposure of humans and wildlife to contaminants, and (3) refining Hg mass balance models for fish and higher vertebrates.http://deepblue.lib.umich.edu/bitstream/2027.42/134637/1/13293_2016_Article_90.pd

    Development and Validation of the Microbiology for Health Sciences Concept Inventory

    Full text link
    Identifying misconceptions in student learning is a valuable practice for evaluating student learning gains and directing educational interventions. By accurately identifying students’ knowledge and misconceptions about microbiology concepts, instructors can design effective classroom practices centered on student understanding. Following the development of ASM’s Curriculum Guidelines in 2012, we developed a concept inventory, the Microbiology for Health Sciences Concept Inventory (MHSCI), that measures learning gains and identifies student misconceptions in health sciences microbiology classrooms. The 23-question MHSCI was delivered to a wide variety of students at multiple institution types. Psychometric analysis identified that the MHSCI instrument is both discriminatory and reliable in measuring student learning gains. The MHSCI results correlated with course outcomes, showing the value of using the instrument alongside course level assessments to measure student learning. The MHSCI is a reliable and efficient way to measure student learning in microbiology and can be used both as a faculty development tool and an effective student assessment tool

    Evaluation of multiple laboratory performance and variability in analysis of recreational freshwaters by a rapid Escherichia coli qPCR method (Draft Method C)

    Get PDF
    There is interest in the application of rapid quantitative polymerase chain reaction (qPCR) methods for recreational freshwater quality monitoring of the fecal indicator bacteria Escherichia coli (E. coli). In this study we determined the performance of 21 laboratories in meeting proposed, standardized data quality acceptance (QA) criteria and the variability of target gene copy estimates from these laboratories in analyses of 18 shared surface water samples by a draft qPCR method developed by the U.S. Environmental Protection Agency (EPA) for E. coli. The participating laboratories ranged from academic and government laboratories with more extensive qPCR experience to “new” water quality and public health laboratories with relatively little previous experience in most cases. Failures to meet QA criteria for the method were observed in 24% of the total 376 test sample analyses. Of these failures, 39% came from two of the “new” laboratories. Likely factors contributing to QA failures included deviations in recommended procedures for the storage and preparation of reference and control materials. A master standard curve calibration model was also found to give lower overall variability in log10 target gene copy estimates than the delta-delta Ct (ΔΔCt) calibration model used in previous EPA qPCR methods. However, differences between the mean estimates from the two models were not significant and variability between laboratories was the greatest contributor to overall method variability in either case. Study findings demonstrate the technical feasibility of multiple laboratories implementing this or other qPCR water quality monitoring methods with similar data quality acceptance criteria but suggest that additional practice and/or assistance may be valuable, even for some more generally experienced qPCR laboratories. Special attention should be placed on providing and following explicit guidance on the preparation, storage and handling of reference and control materials

    Standardized data quality acceptance criteria for a rapid Escherichia coli qPCR method (Draft Method C) for water quality monitoring at recreational beaches

    Get PDF
    There is growing interest in the application of rapid quantitative polymerase chain reaction (qPCR) and other PCR-based methods for recreational water quality monitoring and management programs. This interest has strengthened given the publication of U.S. Environmental Protection Agency (EPA)-validated qPCR methods for enterococci fecal indicator bacteria (FIB) and has extended to similar methods for Escherichia coli (E. coli) FIB. Implementation of qPCR-based methods in monitoring programs can be facilitated by confidence in the quality of the data produced by these methods. Data quality can be determined through the establishment of a series of specifications that should reflect good laboratory practice. Ideally, these specifications will also account for the typical variability of data coming from multiple users of the method. This study developed proposed standardized data quality acceptance criteria that were established for important calibration model parameters and/or controls from a new qPCR method for E. coli (EPA Draft Method C) based upon data that was generated by 21 laboratories. Each laboratory followed a standardized protocol utilizing the same prescribed reagents and reference and control materials. After removal of outliers, statistical modeling based on a hierarchical Bayesian method was used to establish metrics for assay standard curve slope, intercept and lower limit of quantification that included between-laboratory, replicate testing within laboratory, and random error variability. A nested analysis of variance (ANOVA) was used to establish metrics for calibrator/positive control, negative control, and replicate sample analysis data. These data acceptance criteria should help those who may evaluate the technical quality of future findings from the method, as well as those who might use the method in the future. Furthermore, these benchmarks and the approaches described for determining them may be helpful to method users seeking to establish comparable laboratory-specific criteria if changes in the reference and/or control materials must be made

    Effect of nitric oxide on mitochondrial activity of human synovial cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nitric oxide (NO) is a messenger implicated in the destruction and inflammation of joint tissues. Cartilage and synovial membrane from patients with rheumatoid arthritis (RA) and osteoarthritis (OA) have high levels of NO. NO is known to modulate various cellular pathways and, thus, inhibit the activity of the mitochondrial respiratory chain (MRC) of chondrocytes and induce the generation of reactive oxygen species (ROS) and cell death in multiple cell types. For these reasons, and because of the importance of the synovial membrane in development of OA pathology, we investigated the effects of NO on survival, mitochondrial function, and activity of fibroblastic human OA synovial cells.</p> <p>Methods</p> <p>Human OA synovia were obtained from eight patients undergoing hip joint replacement. Sodium nitroprusside (SNP) was used as a NO donor compound and cell viability was evaluated by MTT assays. Mitochondrial function was evaluated by analyzing the mitochondrial membrane potential (Δψm) with flow cytometry using the fluorofore DePsipher. ATP levels were measured by luminescence assays, and the activities of the respiratory chain complexes (complex I: NADH CoQ<sub>1 </sub>reductase, complex II: succinate dehydrogenase, complex III: ubiquinol-cytochrome c reductase, complex IV: cytochrome c oxidase) and citrate synthase (CS) were measured by enzymatic assay. Protein expression analyses were performed by western blot.</p> <p>Results</p> <p>SNP at a concentration of 0.5 mM induced cell death, shown by the MTT method at different time points. The percentages of viable cells at 24, 48 and 72 hours were 86.11 ± 4.9%, 74.31 ± 3.35%, and 43.88 ± 1.43%, respectively, compared to the basal level of 100% (*<it>p </it>< 0.05). SNP at 0.5 mM induced depolarization of the mitochondrial membrane at 12 hours with a decrease in the ratio of polarized cells (basal = 2.48 ± 0.28; SNP 0.5 mM = 1.57 ± 0.11; *<it>p </it>< 0.01). The time course analyses of treatment with SNP at 0.5 mM demonstrated that treatment reliably and significantly reduced intracellular ATP production (68.34 ± 14.3% vs. basal = 100% at 6 hours; *<it>p </it>< 0.05). The analysis of the MRC at 48 hours showed that SNP at 0.5 mM increased the activity of complexes I (basal = 36.47 ± 3.92 mol/min/mg protein, SNP 0.5 mM = 58.08 ± 6.46 mol/min/mg protein; *<it>p </it>< 0.05) and III (basal = 63.87 ± 6.93 mol/min/mg protein, SNP 0.5 mM = 109.15 ± 30.37 mol/min/mg protein; *<it>p </it>< 0.05) but reduced CS activity (basal = 105.06 ± 10.72 mol/min/mg protein, SNP at 0.5 mM = 66.88 ± 6.08 mol/min/mg protein.; *<it>p </it>< 0.05), indicating a decrease in mitochondrial mass. Finally, SNP regulated the expression of proteins related to the cellular cycle; the NO donor decreased bcl-2, mcl-1 and procaspase-3 protein expression.</p> <p>Conclusions</p> <p>This study suggests that NO reduces the survival of OA synoviocytes by regulating mitochondrial functionality, as well as the proteins controlling the cell cycle.</p

    Addition of alternative materials to ceramic slabs

    No full text
    The construction market is very growing, leading to the emergence of new technologies and materials, and a growing need for sustainable products for the construction process, and the call for quality of life we present the description of a new option alternative materials for environments that require careful with the acoustics. The research covers the development and incorporation of new material in construction, with the potential acoustic, from tests and measurements with calibrated decibel meter called. We also used the ceramic tiles pre-molded, used for making floors or ceilings in buildings and homes. The methodology used for the development of this research was characterized as literature, exploratory, descriptive, qualitative and quantitative, alternative and affordable. How after the analysis results of the tests performed it can be seen that the incorporation of rice hulls of agglomerated to form ceramic tiles, possible reductions in noise levels on the order of 8 dB (A) than the traditional construction of the buildings, and then an excellent material. This research contributes to the construction so that presented a description of a new product developed from a conventional material, originating in agriculture, waste rice husk and its incorporation during the construction of buildings and home, with the potential acoustic observed from tests and measurements with calibrated decibel meter called
    • 

    corecore