7 research outputs found

    Autoimmune sera as probes for nuclear substructure

    Get PDF

    A family of process-based models to simulate landscape use by multiple taxa

    Get PDF
    Context: Land-use change is a key driver of biodiversity loss. Models that accurately predict how biodiversity might be affected by land-use changes are urgently needed, to help avoid further negative impacts and inform landscape-scale restoration projects. To be effective, such models must balance model realism with computational tractability and must represent the different habitat and connectivity requirements of multiple species. Objectives: We explored the extent to which process-based modelling might fulfil this role, examining feasibility for different taxa and potential for informing real-world decision-making. Methods: We developed a family of process-based models (*4pop) that simulate landscape use by birds, bats, reptiles and amphibians, derived from the well-established poll4pop model (designed to simulate bee populations). Given landcover data, the models predict spatially-explicit relative abundance by simulating optimal home-range foraging, reproduction, dispersal of offspring and mortality. The models were co-developed by researchers, conservation NGOs and volunteer surveyors, parameterised using literature data and expert opinion, and validated against observational datasets collected across Great Britain. Results: The models were able to simulate habitat specialists, generalists, and species requiring access to multiple habitats for different types of resources (e.g. breeding vs foraging). We identified model refinements required for some taxa and considerations for modelling further species/groups. Conclusions: We suggest process-based models that integrate multiple forms of knowledge can assist biodiversity-inclusive decision-making by predicting habitat use throughout the year, expanding the range of species that can be modelled, and enabling decision-makers to better account for landscape context and habitat configuration effects on population persistence

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore