3,129 research outputs found

    Properties of Turbulence in the Very Local Interstellar Clouds

    Full text link
    We have investigated the degree to which turbulence in the Very Local Interstellar Clouds resembles the highly-studied turbulence in the solar corona and the solar wind. The turbulence diagnostics for the Local Clouds are the absorption line widths measured along 32 lines of sight to nearby stars, yielding measurements for 53 absorption components (Redfield and Linsky 2004). We have tested whether the Local Cloud turbulence has the following properties of turbulence in the solar corona or the solar wind: (a) velocity fluctuations mainly perpendicular to the average magnetic field, (b) a temperature anisotropy in the sense that the perpendicular temperature is larger than the parallel temperature (or at least enhanced relative to expectation), and (c) an ion temperature which is dependent on the ion Larmor radius, in the sense that more massive ions have higher temperatures. Our analysis of the data does not show compelling evidence for any of these properties in Local Cloud turbulence, indicating possible differences with heliospheric plasmas. In the case of anisotropy of velocity fluctuations, although the expected observational signature is not seen, we cannot exclude the possibility of relatively high degrees of anisotropy (anisotropy parameter ϵ∼0.50−0.70\epsilon \sim 0.50 - 0.70), if some other process in the the Local Clouds is causing variations in the turbulent line width from one line of sight to another. We briefly consider possible reasons for differences between coronal and solar wind turbulence and that in the Local Clouds.Comment: Submitted to the Astrophysical Journa

    Ion-Neutral Collisions in the Interstellar Medium: Wave Damping and Elimination of Collisionless Processes

    Full text link
    Most phases of the interstellar medium contain neutral atoms in addition to ions and electrons. This introduces differences in plasma physics processes in those media relative to the solar corona and the solar wind at a heliocentric distance of 1 astronomical unit. In this paper, we consider two well-diagnosed, partially-ionized interstellar plasmas. The first is the Diffuse Ionized Gas (DIG) which is probably the extensive phase in terms of volume. The second is the gas that makes up the Local Clouds of the Very Local Interstellar Medium (VLISM). Ion-neutral interactions seem to be important in both media. In the DIG, ion-neutral collisions are relatively rare, but sufficiently frequent to damp magnetohydrodynamic (MHD) waves (as well as propagating MHD eddies) within less than a parsec of the site of generation. This result raises interesting questions about the sources of turbulence in the DIG. In the case of the VLISM, the ion-neutral collision frequency is higher than that in the DIG, because the hydrogen is partially neutral rather than fully ionized. We present results showing that prominent features of coronal and solar wind turbulence seem to be absent in VLISM turbulence. For example, ion temperature does not depend on ion mass. This difference may be attributable to ion-neutral collisions, which distribute power from more effectively heated massive ions such as iron to other ion species and neutral atoms.Comment: Submitted to American Institute of Physics Conference Proceedings for conference "Partially Ionized Plasmas Throughout the Cosmos", Dastgeer Shaikh, edito

    Observational Tests of the Properties of Turbulence in the Very Local Interstellar Medium

    Get PDF
    The Very Local Interstellar Medium (VLISM) contains clouds which consist of partially-ionized plasma. These clouds can be effectively diagnosed via high resolution optical and ultraviolet spectroscopy of the absorption lines they form in the spectra of nearby stars. Among the information provided by these spectroscopic measurements are the root-mean-square velocity fluctuation due to turbulence in these clouds and the ion temperature, which may be partially determined by dissipation of turbulence. We consider whether this turbulence resembles the extensively studied and well-diagnosed turbulence in the solar wind and solar corona. Published observations are used to determine if the velocity fluctuations are primarily transverse to a large-scale magnetic field, whether the temperature perpendicular to the large scale field is larger than that parallel to the field, and whether ions with larger Larmor radii have higher temperatures than smaller gyroradius ions. Although a thorough investigation of the data is underway, a preliminary examination of the published data shows neither evidence for anisotropy of the velocity fluctuations or temperature, nor Larmor radius-dependent heating. These results indicate differences between solar wind and Local Cloud turbulence.Comment: Paper submitted to Nonlinear Processes in Geophysic

    Ultraviolet C II and Si III Transit Spectroscopy and Modeling of the Evaporating Atmosphere of GJ436b

    Full text link
    Hydrogen gas evaporating from the atmosphere of the hot-Neptune GJ436b absorbs over 50% of the stellar Lyα\alpha emission during transit. Given the planet's atmospheric composition and energy-limited escape rate, this hydrogen outflow is expected to entrain heavier atoms such as C and O. We searched for C and Si in the escaping atmosphere of GJ436b using far-ultraviolet HST COS G130M observations made during the planet's extended H I transit. These observations show no transit absorption in the C II 1334,1335 \AA\ and Si III 1206 \AA\ lines integrated over [-100, 100] km s−1^{-1}, imposing 95% (2σ\sigma) upper limits of 14% (C II) and 60% (Si III) depth on the transit of an opaque disk and 22% (C II) and 49% (Si III) depth on an extended, highly asymmetric transit similar to that of H I Lyα\alpha. C+^+ is likely present in the outflow according to a simulation we carried out using a spherically-symmetric, photochemical-hydrodynamical model. This simulation predicts a ∼\sim2% transit over the integrated bandpass, consistent with the data. At line center, we predict the C II transit depth to be as high as 19%. Our model predicts a neutral hydrogen escape rate of 1.6×1091.6\times10^{9} g s−1^{-1} (3.1×1093.1\times10^{9} g s−1^{-1} for all species) for an upper atmosphere composed of hydrogen and helium.Comment: 7 pages, 4 figures, 1 table; accepted to ApJ Letter

    Decoherence in a superconducting flux qubit with a pi-junction

    Get PDF
    We consider the use of a pi-junction for flux qubits to realize degenerate quantum levels without external magnetic field. On the basis of the Caldeira-Leggett model, we derive an effective spin-Boson model, and study decoherece of this type of qubits. We estimate the dephasing time by using parameters from recent experiments of SIFS junctions, and show that high critical current and large subgap resistance are required for the pi-junction to realize a long coherent time.Comment: 5 pages, 2 figure

    Low frequency Rabi spectroscopy for a dissipative two-level system

    Full text link
    We have analyzed the interaction of a dissipative two level quantum system with high and low frequency excitation. The system is continuously and simultaneously irradiated by these two waves. If the frequency of the first signal is close to the level separation the response of the system exhibits undamped low frequency oscillations whose amplitude has a clear resonance at the Rabi frequency with the width being dependent on the damping rates of the system. The method can be useful for low frequency Rabi spectroscopy in various physical systems which are described by a two level Hamiltonian, such as nuclei spins in NMR, double well quantum dots, superconducting flux and charge qubits, etc. As the examples, the application of the method to a nuclear spin and to the readout of a flux qubit are briefly discussed.Comment: 4 pages, 3 figures, the figures are modifie

    Far-Ultraviolet Activity Levels of F, G, K, and M dwarf Exoplanet Host Stars

    Get PDF
    We present a survey of far-ultraviolet (FUV; 1150 - 1450 Ang) emission line spectra from 71 planet-hosting and 33 non-planet-hosting F, G, K, and M dwarfs with the goals of characterizing their range of FUV activity levels, calibrating the FUV activity level to the 90 - 360 Ang extreme-ultraviolet (EUV) stellar flux, and investigating the potential for FUV emission lines to probe star-planet interactions (SPIs). We build this emission line sample from a combination of new and archival observations with the Hubble Space Telescope-COS and -STIS instruments, targeting the chromospheric and transition region emission lines of Si III, N V, C II, and Si IV. We find that the exoplanet host stars, on average, display factors of 5 - 10 lower UV activity levels compared with the non-planet hosting sample; this is explained by a combination of observational and astrophysical biases in the selection of stars for radial-velocity planet searches. We demonstrate that UV activity-rotation relation in the full F - M star sample is characterized by a power-law decline (with index α\alpha ~ -1.1), starting at rotation periods >~3.5 days. Using N V or Si IV spectra and a knowledge of the star's bolometric flux, we present a new analytic relationship to estimate the intrinsic stellar EUV irradiance in the 90 - 360 Ang band with an accuracy of roughly a factor of ~2. Finally, we study the correlation between SPI strength and UV activity in the context of a principal component analysis that controls for the sample biases. We find that SPIs are not a statistically significant contributor to the observed UV activity levels.Comment: ApJS, accepted. 33 pages in emulateapj, 13 figures, 10 table

    Long range targeting for space based rendezvous

    Get PDF
    The work performed under this grant supported the Dexterous Flight Experiment one STS-62 The project required developing hardware and software for automating a TRAC sensor on orbit. The hardware developed by for the flight has been documented through standard NASA channels since it has to pass safety, environmental, and other issues. The software has not been documented previously, therefore, this report provides a software manual for the TRAC code developed for the grant

    Evaluation of the Shuttle remote manipulator

    Get PDF
    The objective initially proposed was to analyze shuttle remote manipulator (SRM) performance data collected during a Shuttle Flight. The data was to consist of video TRAC data collected via a video recorder. Unfortunately, the flight never collected the data due to higher priority experiments superseding it. As a result, the research team at Texas A&M was directed to work on several other pressing issues regarding the TRAC sensor. All but one of these issues were reported earlier in the form of periodic status reports. In fulfillment of the grant conditions, the last issue investigated is being reported as the final report. Ordinarily, a TRAC sensor determines the orientation of an object by analyzing the image reflected from a mirror target. The concern addressed is to develop a method for using the TRAC sensor when the target does not reflect a usable image
    • …
    corecore