@ https://ntrs.nasa.gov/search.jsp?R=19940009327 2020-06-16T21:31:03+00:00Z

' NASA-CR-194351

N94~13800

EVALUATION OF THE

SHUTTLE REMOTE MANIPULATOR Final

(NASA-CR-194351)

(Ae9-Y/50

A FINAL REPORT FOR:
EVALUATION OF THE SHUTTLE REMOTE

(R
MANIPULATOR =
-2 72
Otherwise known as: O, 7
DETERMINATION OF TARGET POSE WITHOUT SENSOR REFLECTION
) 85530

il

Prepared for: Leo Monford, NASA-JSC

Q
PG by
. L. J. Everett
3 and
° R. C. Redfield
Mechanical Engineering Department
Texas A&M University

17 p

College Station, Texas 77843-3123

(Texas AEM Univ.)

September 23, 1993

Report

INTRODUCTION

The objective initially proposed was to analyze RMS performance data collected
during a Shuttle Flight. The data was to consist of video TRAC data collected via
a video recorder. Unfortunately, the flight never collected the data due to higher
priority experiments superseding it. As a result, the research team at Texas A&M
was directed to work on several other pressing issues regarding the TRAC sensor. All
but one of these issues have been reported to the contract monitor (Mr. Leo Monford)
earlier in the form of periodic status reports.

In fulfilment of the grant conditions, the last issue investigated is being reported
as the final report. Ordinarily, a TRAC sensor determines the orientation of an object
by analyzing the image reflected from a mirror target. The concern addressed by this

report is to develop a method for using the TRAC sensor when the target does not
reflect a usable image.

Determination of Target Pose without Sensor Reflection

Objective

Given two objects or structures with relative pose between them, an object with an integral,
specially configured target and an object with a vision sensor, determine the position and orientation
of the target relative to the sensor. No mirror reflection of the sensor off the target and back to the

sensor is available.

Hardware
The target is a configuration of four distinct objects (LED arrays, retro-reflectors, etc.) that can
be independently recognized. The vision system sensor views the target and a computer algorithm

determines the azimuth and elevation of each LED array relative to the sensor coordinate system.

Coordinates

In Figure 1 the visign system is at the origin, O, of the right-hand coordinate system fixed to
the sensor object. The target is at P. The forward axis of the sensor, which is the optical axis of the
vision system, is in the z direction. Upward is the y direction and to the left is the x direction. The
position vector from O to P is R which has length . Azimuth angle, 6, is defined about the y
axis measured from positive z; elevation angle, o, is about x in the negative direction measured

from the x-z plane.

Figure 1 - Coordinate system

A working angle @ is defined as the angle between the position vector and the x-z plane.

Cartesian geometry shows that if
R= px‘i\+ pyj+ pzﬁ’ (1)
then
Py =T cosgsind
py =T sing
p, =T cos¢p cosb @
where
-1} € = -1 Eoi = -1
® m[b]—m[ab} tan [tana cos0] 3

Full geometry

The entire geometry including the 4 target objects is shown in Figure 2.

»)

Figure 2 - Gepmetry of tracking scenario

The origin of the x-y-z system is the vision system, the 4 black dots are the target objects P;, the R;

are the radius vectors between the sensor object and the individual target objects, and the Vij are the
vectors connecting the points in the target. The azimuth and elevation of each radius vector is
known, but its length is not. The geometry of the target is known, that is the lengths of the Vij and

the angles between the Vij .

Determination of target pose

If the lengths of the R, (r;) can be found, the points P; can be calculated and the target pose will
be known. To the investigators’ knowledge, any solution to this problem involves the simultaneous
solution of a set of nonlinear algebraic equations. To solve this set of equations, an initial guess of
the r; converges to a solution by iteration.

Two approaches are taken to this problem, both of which are detailed in the next section of this
paper. The “direct” approach takes a guess at one of the radius vector lengths, r|, and calculates the
remaining radius vectors based on geometry. If these vectors determine a target configuration
geometry that agrees with the actual geometry to some tolerance, a solution is found, otherwise a
new guess at 1, is taken. The second approach guesses all four radius vectors, applies the geometric
nonlinear relations, f,(r,1,,13,1,) = f;(1) = €, and calculates a residual that indicates error. The four
vector lengths are simultaneously altered with a Newton-Raphson technique for sets of nonlinear

equations.

Direct approach
An initial guess of one of the radius vector lengths, r;, allows the calculation of a second radius

vector length, r; from the geometry of Figure 3.

Figure 3 - Guess at radius vectors

The law of cosines is applied with a guess for r;, and a known v;; and f3. B is the angle subtended by
R;andR i The cosine of B is found as the dot product of the radius unit vectors, & - én"
The geometry yields zero, one, or two real r [for each given r; as seen in the quadratic equation

of equation 4.
2_ .2
rj2—2ricosﬁrj+ri -vi;=0 @)

In Figure 4, four possible cases, A-D, are shown for the solution of equation 4. R, and R j are two
radius vectors of known directions but unknown lengths and Vij is the target vector between R, and
Rj with known length but unknown direction. The circles all have a radius of Vi = |Vij|' a-d are

distances along R, from the origin, O.

Figure 4 - Possible radius vectors

Case A shows a guessed length for R, of a. No direction of Vij allows contact with R j S0 the
guessed length is too long and the solution to equation 4 would yield complex numbers. Case B
shows a guess length for R; of b that allows one solution, vector Vij is normal to R i The quadratic
equation would result in a repeated root. Case C shows a length for R, of c that gives two solutions
to the direction of Vij and Case D shows that one of the two solutions implies a negative R ; which is
not physically possible in the targeting scenario.

For the solution of all four radius vectors, the following steps are taken which will be detailed

afterwards: 2

a) Determine valid range and increment forr,.
b) Cycle through the r range from maximum to minimum.
1) Foreachr, calculate possible r,, 13, and ry.
2) For each combination of r ... r4 determine all Vii from equation 4.
3) Calculate error as difference between v;; from step b2 and actual target v;.
4) Record r; that minimizes error
5) Pick newr; and repeat b.
c) Determine new range nearr; ;.; repeat step b
d) Stop whenr, increment is less than tolerance.

The maximum r; value is determined such that given v, real r,, 15, and r exist. Case B in

jj’
Figure 4 shows the maximum r, that allows a real solution for ;. If r;>b, there is no solution. The

result is that

tmex " sin B o)
This maximum is determined for each of the 3 vectors r,-r4 and the minimum of these is retained.

The minimum r, is initially taken to be zero and its range is arbitrarily divided into n
increments of lengthr, . =r, . /n. r, iscycled through this range from maximum to minimum and
for each r | the r,r, are détermined with equation 4. Since there are usually 2 T (j=2,3,4) for each
1}, there are 23 combinations of radius vectors for each I

Each of these combinations of r;, T is inserted into equation 4 for i,j=2,3; 2,4; 3,4 and the Vij
are calculated. The closer these calculated vjj are to the actual Vij the better the estimate of r. The
difference between the two v;; is termed “error.” For the r that gives a minimum error in the current
range (1 1"), a new range forr is chosen tober 1* 1. 10 rl* - T~ The maximum value is kept no
more than R, .. and the minimum value is never less than zero. A new increment is chosen by
dividing the new range into » divisions. When the r, . is less than some tolerance and the minimum

error is found in the current range, the solution is in hand.

The FORTRAN code that implements this strategy is in Appendix A.

Newton-Raphson approach
This method solves a set of 4 nonlinear equations where the ﬁij and v;; are known and the r; are

unknown. Equation (6) is the set of equations; with correct 1, the f; = 0.

2,2 2
fy(r), T2, T3, T4) =1y + 12~ 20115 008P15 — V{5

2.2 2
fo(ry, 19,73, T4) =13 + 13~ 2113 €08P,3 — V33

2.2 2
f3(ry, 15, T3, T4) =13 + 13— 2rar4 cosPay — vig

2.2 2
falry, 19,73, 14) =13 + 17 — 2147y cosPyy — vy ©)

Press et al. [1986] outline the method where a truncated Taylor series expansion approximates the f;
with the second and higher order terms dropped.

MY
£+ B = ;@) + z 5;;?arj+9@’z{)
J

™

For an initial guess of 1, the left had sides of equation (6) are not usually zero. From equation (7),
the dr are required that make f; (r + 3r) zero given an initial f; (r). Equation (7) is a linear set of
equations in dr that can be solved with LU decomposition or any other method. As long as the
initial guess of r is close enough to the solution, the Newton-Raphson schemes converges nicely.
Otherwise, the scheme mgy never converge or perhaps converge to the wrong solution.

In practice, the algorithm converges very well in a local neighborhood around the correct
solution. If the guess is not in the neighborhood the scheme either does not converge or it converges
to a wrong solution. The difficulty is in defining the neighborhood. In testing, sometimes an initial
guess for r of 50% of the solution would converge in less than 50 iterations. Other times, an initial
guess within 5% of the solution would never converge. This uncertainty leaves the Newton-Raphson
lacking without further inquiry.

The FORTRAN code for this scheme is in Appendix B.

References
Press, W. H., Flannery, B. P., Teukolsky, S A., and Vetterling, W. T., 1986, Numerical
Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, pp. 269.

R

Appendix A - FORTRAN code for direct approach

c**t************#*t**#*t***##**#***#********#***#**********t***#**t********#***#

c target.for
program target
c
R KR AR AR KR KK K K R OR R ROR KR KR KR KKK R KRR KR K Rk Bk kK KRR KRR Rk KKk
c
¢ Routine find Ri for 4 vectors by guessing R!, calculating R2, R3, and R#%
¢ and applyling law of cosines to find residual errors,. Ri that minimizes
¢ errors is best guess,

c 1 2 3 4 5 6 7
£23456789012345678901234567690123456769012345678901234567890123456789012

real r2(2),r3(2), r4(2), err(2,2)

real t(4,4), az(4), el{4), phi(4), c(4,4), s2(4,4)
real merit, minl, min2

open {unit=10, flle="target.inp', statue='old"')

¢ read input data from file TARGET. INP

read (10,*) toldrt, tolmin | Converg tolerances
tmax = 0 ! Initialize max value
do 5, =1, 3

do 5, J=i+1,4

read (10,%*) t(i,j)

t{j,1) = t(i,])

5 tmax = amax! (tmax, t(i,j))

read (10,*) faz(i), i=1, 4)
read (10,*) (el (i), i=1, 4)

Symmetric

Hax target vector
Rzimuth angles
Elevation angles

¢ convert to radians from degrees

pi = 3.14156 ! Calculate pi
do 10 i=1, 4
az(i) = az(i) * pl/180
el(i) = el(i) * pi/180
10 phi(i) = atan({ tan{el{i)) * cos(az(i)))

¢ calculate cos and sin of angles between radius vectors (cos = el dot e2)

do 20, i=1, 3
do 20, j=i+1, 4
c(i,j) = sin{phi{i)) * sin(phi(j)) +
& cos{phi(i))*cos(az(i)) * cos(phi(j))*cos(az(j)) +
* cos(phi{i))*sin{az(i)) * cos(phi(j))*sin(az(j))
c(j,i) = ¢(i,})

erite(6,*) 'c,t ', I,], eCi,]), t(i,j) | echo input
82(i,J) =1 - c{i,])**2 ! sine squared of angle
20 82(j,i) = 82(i,j) I Symmetric
¢ limits on ri values
rmax = |.e20 ! initial rmax
do 30, j=2, 4 3
tap = sqgrt{ s2(1,j)) ’ ! slpne of angle 1-1
if (tmp .eq. 0) tap=1!.e-20 ! no / by zero
tmp = t{1,])/tmp . ! max ri due to r(})

if (tmp .eq. 0) tmp=1.e-20 ! no / by zero

tmp = t(1,j)/tmp ! max r! due to r(j)
rmax = amini{rmax, tmp) ! max r!1 is min of 4
30 continue

c loop to find radius vector lengths - set increment based on limits

rmin = 0. Vel minimum

rup = raax

drl = pmax / 10 ' »1 increment
mint = 1,e20 ! ipitial minimums

min2 = 1,e20
35 write(6,*) * '

write(6,*) 'dri-> ', drt, ' rup-> ',rup, ! counter
L4 ‘'roin-> ', rmin
do 80, el = pup, rmin, -dri ! loop ris

¢ two values of r2,r3,and r4 for each ri

tmp2 = t(1,2)%%2 - pi*%2 % ¢2(1,2)
if (tmp2 .I1t. 0.) tmp2 = 0.
tep3 = t(1,3)%%2 - ni*¥2 * 32(1,3)
if (tmp3 .1t. 0.) tmp3 = 0.

r2(1) = pl * ¢(1,2) + sqrt(tmp2)
r2(2) = r1 * c{(1,2) - sgrt(tmp2)
r3(1) = rt * c(1,3) + sqrt(tmp3)
r3(2) = rt * ¢{1,3) - sqrt{tmp3)

¢ check 2-3 vector, 4 combinations

do 60, i=1;2
do 60 j=1,2
err{i,j) = r2(i)**x2 + r3(j)**2 -
: 2¥p2(i)*r3(j)%c(2,3) - t(2,3)%%2

tmpd = t(1,4)%%2 _ pn1**¥2 * 82(1,4)
If (tmpt .1t. 0.) tmp4 = 0.

r4(1) = pr1 * c(1,4) + sqrt{tmpd)
r4(2) =rt *¥ ¢c(1,4) - sqrt(tmp4)

do 55 k=1,2
err24 = p2(1)%*%2 + p4(k)**2 - ! vector 2-4
2 2%p2(i)*r4(k)*c{2,4) - t(2,4)**2
errd4 = r3(])**2 + pre(k)**2 - ! vector 3-4
3 2*¥r3(j)*r4(k)*c(3,4) - t(3,4)%*2

c merit is sum of absolute 2-3, 2-4, and 3-4 vector errors

merit = abs(err24) + abs(err34) + abs(err(i,]))
if (merit .ft. minl) then

min2 = minl ! save best
rif2z = pifl
r2f2 = r2f1
r3f2 = r3fl
r4f2 = r4fi
nint = merit
rifl = pi
r2f1 = p2(i) =}
r3fl = r3(j)
r4fl = r4(k)
else ’

55
60
80

if (merit

min2 =
rif2 =
r2f2 =
rif2 =
r4f2 =
endif
endi f

continue
continue
continue

write(6,*) "1-> ',
arite(6,*) "merit 1
erite(6,*) '2-> *,

.1t. min2) then
merit
rl
r2(i)
r3(j)
r4(k)
rifl, r2fl, r3fl, rdfl
-> ',mint
r1f2, r2f2, r3f2, r4f2

write(6,%) 'merit 2-> ',min2

if (dr1 .le., toldrt

L or,

mini

rup = amax1(rtfl, r1f2) + dr!
if (rup .gt. rmax) rup=rmax

rnin = amint{r1f1,

r1f2)

drt = (rup-ramin)/10,

go to 35

end

- dri

e,

tolmin) stop

|
:

save second best

output

within tel?
new max
new min

new increment
new range & increment

Appendix B - FORTRAN code for Newton-Raphson approach
(Code in all CAPS is from Press [1986])

c ***l*******#‘#**#*t**t**lt***##*****t**#********t******t***#******tt*tt****

program root

ROOT.FOR

c Jo ok ok ok ok ok K o 3 oK o ok ok ok o ok ok sk K o K ok 3Kk ok ok ok ok koK ok ok ok ok e ook ok ok ok ok ok kR koK ok ok KKK 0Kk ok K

c Program to find radius vector lengths for comet geometry

real r{4), az(4), el(4), phi(4)
include 'root.linc'
c common /dim/ t(4,4),

¢ open input file

open {(unit=10,

c(4,4), s(4,4),

¢ read input data from file ROOT.DAT

read(10,*) tolx, tolf,

do 5, i=1, 3
do 5, j=i+1,4

ntrial

read (10,*) t(i,})

5 t{j, 1) = t(i,j)
read (10,*) @az(i),
read (10,*) (el (i),

i=1,

i=t,

4)
1)

¢ convert to radians from degrees

= 3.14159
10 =1, ¢

pi
do

az(i) = az(l) * pi/180
el(1) = el(i) * pi/180

10

fite="root.Inp',

!

Common for "usrfun”

betasum

status='old")

phi(l) = ataon{ tan{et (i)} * cos(az(i)))

Tolerance x & f, max. Iters.

Target vector lengths
Synmetric

Azimuth angles

Elevat ion angles

Pl

¢ calculate cos and sin of angles between radius vectors (cos = et dot e2)

do 20, i=1, 3
do 20, j=i+1, 4
c(i,j) = sin(phi(i)) * sin(phi(j)) +
= cos{phi(i))*cos(az(i)) * cos(phi(j))*cos(az(j)) +
L cos{phi{i))*sin(az{i)) * cos{phi(j))*sin{az(j))

e, 1) = cli,})
s(i,)) =

20 s(j,1) = a(i,j)
¢ maximum radius vectors and initial pr
fac = 1.0
22 do 30 i=1, ¢4 3
rmax = 1,e20 -
do 25 j=1, ¢
If (j .eq. i) go to 25

sqrt(1 - c(i,j)**2)

10

Symmetric
Sine
Symmetric

large to start

no angle here

25

30

c call

if (s(i,]) .eq. 0.) go to 25
test = t{i,j) / s(i,j)
rmax = aminl {rmax, test)
continue
r(i}) = fac * rmax
continue
write (6,*) 'initial r(i)’
write (6,*%) (r(i), iI=1, 4)

aolver

nt = ntrial
call mnewt{nt, r, 4, tolx, teclf)
if (nt .eq. 0) then
fac=fac - 0.1
if (fac .eq. 0) stop
go to 22
endif

¢ check results

50

do 50, i=1, 3
do 50, j=i+1, 4

no limit here

start ot 80X nax

plum run out

tc = sqrt(r(i)**%2 + p(j)**2 - 2%pr(id*r(j)*c(i,j))

write(6,%) "in ',t(i,j), ‘out

write(6,%) 'Rs ', (r(i), i=1, 4)

stop
end

11

SUBROUTINE MNEWT(NTRIAL,X,N,TOLX,6 TOLF)
PARAMETER (NP=4)
DIMENSION X(NP),RLPHA(NP,NP), BETAR(NP), INDX(NP)
DO 13 K=1,NTRIAL
CALL USRFUN(%,ALPHA,BETR)
EARF=0.
oo ¢ 1=1,N
ERRF=ERRF+ABS(BETA(1))
] CONTINUE
IFCERRF.LE.TOLF)RETURN
CALL LUDCHMP(ALPHA,N,NP, INDX,D)
CALL LUBKSB{RALPHR,N,NP, INDX,6BETR)
ERRX=0.
Do 12 i=1,N
ERRX=ERRR+ABS (BETA(1))
R(1)=H(1)+BETR(I)
12 CONTINUE
IF(ERRX.LE.TOLX)RETURN
13 CONRTINUE
RETURN
END

12

12

15

16

18

SUBROUTINE LUDCMP(R,N,NP,INDX,D)
PARANETER (NMAX=100,TINY=1.0E-20)
DIMENSION A(NP,NP), INDX{N),6UU(NHAX)
0=1,
Do 12 i=1,H
ARNAX=0.
Do 11 J=1,N
IF (ABS(A(1,J)).GT.AANAK) RANAK=ABS(A(I,J))
CONTINUE
IF (ARMAX.EQ.0.) PAUSE 'Singular matrix.'
uuf1)=1,/AARNAX
CONTINUE
po 19 J=1,H
IF (J.GT.1) THEN
0o 14 1=1,J-1
sun=A(l,J)
IF {1.GT.1)THEN
D0 13 K=1,1-1
sun=sun-A(1,K)*A(K, J)
CONTINUE
ACt,J)y=5UN
ENDIF
CONT INUE
ENDIF
RAMAK=0.
oo 16 I=J,N
SuUn=A{t,J)
IF (J.6T.1)THEN
DO 15 K=1,J-1
Sutt=sun-A(l,K)*A(K,J)
CONT I NUE %
{1, d3=50n
ENDIF
DUM=UU(1 }*ABS (SUN)
IF (DUM.GE.AAMAX) THEN
InAx=1
RAMARX=DUN
ENDIF
CONTINUE
IF (J.NE. INAX)THEN
DO 17 K=1,N
DUM=R(IHAX, K)
ACIMAR,K)=A(J,K)
A(J,K)=DUN
CONT INUE
D=-D
vu(InAx)=uu(J)
ENDIF
INDK(J)=1MAX
IF(J.NE.NITHEN
IF(A(J,J).EQ.C.)R(J,y=TINY
pun=1./8¢J,J)
B0 18 i=J+t,N
ACE,J)=R(1,J)*DUN

CONT INUE

ENDIF
CONTINUE .
IF(ACN,N).EQ.C.)ACH, N)=TINY ~
RETURN

END

13

13

SUBROUTINE LUBKSB(R,N,NP, |NDX,B)
DIMENSION R(NP,NP), INDX(N),B(N)
11=0
00 12 I=1,N
LL=INDX(1)
SUM=B(LL)
B(LL)=B(I)
{F (11.NE.O)THEN
00 11 J=11,1-1
SUN=SUN-R{1,J)*B(J)
CONT INUE
ELSE IF (SUM.NE.D.) THEN
=1
ENDIF
B(1)=SUN
CONT I NUE
DO 14 I=N,1,-1
SUM=B(1)
IF(1.LT.N)THEN
DO 13 J=i+1,N
SUN=SUN-A(1,J)*B(J)
CONT INUE
ENDIF
B(1)=SUM/ACT,)
CONT I NUE
RETURN
END

L
=

14

2 KK K KR oK R R oK 3 KK R K Xk K ok ok e oK ok oK K ok ok 3ok K ko ok kK K ok Nk 3 ROk KKK KRR R KK KKk R KOk KKk KKK

USRFUN .FOR
subroutine usrfun (r, olphg, beta)

Kokok K okok kokok Rk R AR KKK RKRE K ERERE KK KK KRR R E R R KE KR KR KRR R KRR KRR KX KRk KKk kX

include 'root.inc'
real alpha(4,4), beta(4), r(4)

calculate functions and derivatives from faw of cosines

beta(1) = —-(r{1)*n{1) + r(2)*r(2) - | 1-2
b 2%p(1)*p(2)%c(1,2) - t{1,2)*t(1,2))

alphal(1,1) = 2%n(1) - 2*c(1,2)}*r(2)

alpha(1,2) = 2*p(2) - 2*c(1,2)*r(1)

alpha{(1,3) = 0

alpha{1,4) = 0

beta(2) = -{ r{1)*pr(1) + r{(3)*r(3) - 1 1-3
s 2%p (1) *r (3)%c(1,3) - t(1,3)*t(1,3))

aipha(2,2) = 0

alpha(2,3) = 2*p(3) - 2*c(1,3)*r(1)

alpha(2,1) = 2*p(1) - 2*c(1,3)*%r3

alpha{2,4) = 0

beta(3) = -(r{3)*r{(3) + r(4)*r(4) - ! 3-4
: 2%n(3)*p(4)*c(3,4) - t(3,4)*t(3,4))

alpha(3,3) = 2*nr(3) -2*%c(3,4)*r(4)

alpha(3,4) = 2*nr(4) -2%c(3,4)*r(3)

alpha(3,1) = 0

alpha(3,2) =%

beta(4) = -{ r(4)*r(4) + r{2)*r(2) - b 2-4
s 2%r(4)*n (1)*c(2,4) - t(2,4)*t(2,4))

alpha(4,2) = 2*r(2) -2%c(2,4)*r(4)
alpha{4,4) = 2%p(4) -2%c(2,4)*r(2)
alpha{(4,1) = 0
alpha(4,3) = 0

betasum = 0 ! Convergence
write(6,*) 'r-> G o(eli), i=1, 4)

write(6,*) 'beto-> ', (beta(i), =1, 4)

return

end

15

