A FINAL REPORT FOR： EVALUATION OF THE SHUTTLE REMOTE MANIPULATOR
 Otherwise known as：
 DETERMINATION OF TARGET POSE WITHOUT SENSOR REFLECTION
 185530

Prepared for：Leo Monford，NASA－JSC

\Rightarrow
by
L．J．Everett
and
R．C．Redfield
Mechanical Engineering Department
Texas A\＆M University
College Station，Texas 77843－3123

Septęmber 23， 1993

INTRODUCTION

The objective initially proposed was to analyze RMS performance data collected during a Shuttle Flight. The data was to consist of video TRAC data collected via a video recorder. Unfortunately, the flight never collected the data due to higher priority experiments superseding it. As a result, the research team at Texas A\&M was directed to work on several other pressing issues regarding the TRAC sensor. All but one of these issues have been reported to the contract monitor (Mr. Leo Monford) earlier in the form of periodic status reports.

In fulfilment of the grant conditions, the last issue investigated is being reported as the final report. Ordinarily, a TRAC sensor determines the orientation of an object by analyzing the image reflected from a mirror target. The concern addressed by this report is to develop a method for using the TRAC sensor when the target does not reflect a usable image.

Determination of Target Pose without Sensor Reflection

Objective

Given two objects or structures with relative pose between them, an object with an integral, specially configured target and an object with a vision sensor, determine the position and orientation of the target relative to the sensor. No mirror reflection of the sensor off the target and back to the sensor is available.

Hardware

The target is a configuration of four distinct objects (LED arrays, retro-reflectors, etc.) that can be independently recognized. The vision system sensor views the target and a computer algorithm determines the azimuth and elevation of each LED array relative to the sensor coordinate system.

Coordinates

In Figure 1 the vision system is at the origin, O, of the right-hand coordinate system fixed to the sensor object. The target is at P. The forward axis of the sensor, which is the optical axis of the vision system, is in the z direction. Upward is the y direction and to the left is the x direction. The position vector from O to P is \mathbf{R} which has length r. Azimuth angle, θ, is defined about the y axis measured from positive z; elevation angle, α, is about x in the negative direction measured from the $x-z$ plane.

Figure 1 - Coordinate system

A working angle φ is defined as the angle between the position vector and the $x-z$ plane.
Cartesian geometry shows that if

$$
\begin{equation*}
\mathbf{R}=p_{x} \hat{i}+p_{y} \hat{j}+p_{z} \hat{k} \tag{1}
\end{equation*}
$$

then

$$
\begin{align*}
& p_{x}=r \cos \varphi \sin \theta \\
& p_{y}=r \sin \varphi \\
& p_{z}=r \cos \varphi \cos \theta \tag{2}
\end{align*}
$$

where

$$
\begin{equation*}
\varphi=\tan ^{-1}\left[\frac{c}{b}\right]=\tan ^{-1}\left[\frac{c}{a} \cdot \frac{a}{b}\right\}=\tan ^{-1}[\tan \alpha \cos \theta] \tag{3}
\end{equation*}
$$

Full geometry

The entire geometry including the 4 target objects is shown in Figure 2.

Figure 2 - Geometry of tracking scenario
The origin of the $x-y-z$ system is the vision system, the 4 black dots are the target objects P_{i}, the \mathbf{R}_{i}
are the radius vectors between the sensor object and the individual target objects, and the \mathbf{V}_{ij} are the vectors connecting the points in the target. The azimuth and elevation of each radius vector is known, but its length is not. The geometry of the target is known, that is the lengths of the V_{ij} and the angles between the V_{ij}.

Determination of target pose

If the lengths of the $\mathbf{R}_{i}\left(r_{i}\right)$ can be found, the points P_{i} can be calculated and the target pose will be known. To the investigators' knowledge, any solution to this problem involves the simultaneous solution of a set of nonlinear algebraic equations. To solve this set of equations, an initial guess of the r_{i} converges to a solution by iteration.

Two approaches are taken to this problem, both of which are detailed in the next section of this paper. The "direct" approach takes a guess at one of the radius vector lengths, r_{1}, and calculates the remaining radius vectors based on geometry. If these vectors determine a target configuration geometry that agrees with the actual geometry to some tolerance, a solution is found, otherwise a new guess at r_{1} is taken. The second approach guesses all four radius vectors, applies the geometric nonlinear relations, $f_{i}\left(r_{1}, r_{2}, r_{3}, r_{4}\right)=f_{i}(\underline{r})=\varepsilon$, and calculates a residual that indicates error. The four vector lengths are simultaneously altered with a Newton-Raphson technique for sets of nonlinear equations.

Direct approach

An initial guess of one of the radius vector lengths, r_{i}, allows the calculation of a second radius vector length, r_{j} from the geometry of Figure 3.

Figure 3 - Guess at radius vectors

The law of cosines is applied with a guess for r_{i}, and a known v_{ij} and β. β is the angle subtended by \mathbf{R}_{i} and \mathbf{R}_{j}. The cosine of β is found as the dot product of the radius unit vectors, $\hat{\mathrm{e}}_{\mathrm{r} i} \cdot \hat{\mathrm{e}}_{\mathrm{rj}}$.

The geometry yields zero, one, or two real r_{j} for each given r_{i} as seen in the quadratic equation of equation 4.

$$
\begin{equation*}
r_{j}^{2}-2 r_{i} \cos \beta r_{j}+r_{i}^{2}-v_{i j}^{2}=0 \tag{4}
\end{equation*}
$$

In Figure 4, four possible cases, A-D, are shown for the solution of equation 4. \mathbf{R}_{i} and \mathbf{R}_{j} are two radius vectors of known directions but unknown lengths and \mathbf{V}_{ij} is the target vector between \mathbf{R}_{i} and \mathbf{R}_{j} with known length but unknown direction. The circles all have a radius of $v_{\mathrm{ij}}=\left|\mathbf{V}_{\mathrm{ij}}\right|$. a-d are distances along $\mathbf{R}_{\mathbf{i}}$ from the origin, \boldsymbol{O}.

Figure 4 - Possible radius vectors

Case A shows a guessed length for \mathbf{R}_{i} of a. No direction of \mathbf{V}_{ij} allows contact with \mathbf{R}_{j} so the guessed length is too long and the solution to equation 4 would yield complex numbers. Case B shows a guess length for \mathbf{R}_{i} of b that allows one solution, vector \mathbf{V}_{ij} is normal to \mathbf{R}_{j}. The quadratic equation would result in a repeated root. Case C shows a length for $\mathbf{R}_{\mathbf{i}}$ of c that gives two solutions to the direction of \mathbf{V}_{ij} and Case D shows that one of the two solutions implies a negative \mathbf{R}_{j} which is not physically possible in the targeting scenario.

For the solution of all four radius vectors, the following steps are taken which will be detailed afterwards:
a) Determine valid range and increment for r_{1}.
b) Cycle through the r_{1} range from maximum to minimum.

1) For each r_{1} calculate possible r_{2}, r_{3}, and r_{4}.
2) For each combination of $\mathrm{r}_{1} \ldots \mathrm{r}_{4}$ determine all v_{ij} from equation 4 .
3) Calculate error as difference between $v_{i j}$ from step $b 2$ and actual target $v_{i j}$.
4) Record $\underline{r}_{\text {min }}$ that minimizes error
5) Pick new r_{1} and repeat b.
c) Determine new range near $r_{1 \text { min }}$; repeat step b
d) Stop when r_{1} increment is less than tolerance.

The maximum r_{1} value is determined such that given $v_{i j}$, real r_{2}, r_{3}, and r_{4} exist. Case B in Figure 4 shows the maximum r_{i} that allows a real solution for r_{j}. If $r_{i}>b$, there is no solution. The result is that

$$
\begin{equation*}
r_{i \max }=\frac{v_{i j}}{\sin \beta} \tag{5}
\end{equation*}
$$

This maximum is determined for each of the 3 vectors $\mathrm{r}_{2}-\mathrm{r}_{4}$ and the minimum of these is retained.
The minimum r_{1} is initially taken to be zero and its range is arbitrarily divided into n increments of length $r_{i n c}=r_{i \max } / n . r_{1}$ is cycled through this range from maximum to minimum and for each r_{1} the $r_{2}-r_{4}$ are determined with equation 4. Since there are usually $2 r_{j}(j=2,3,4)$ for each r_{1}, there are 2^{3} combinations of radius vectors for each r_{1}.

Each of these combinations of r_{i}, r_{j} is inserted into equation 4 for $i, j=2,3 ; 2,4 ; 3,4$ and the $v_{i j}$ are calculated. The closer these calculated $v_{i j}$ are to the actual $v_{i j}$ the better the estimate of \underline{r}. The difference between the two $v_{i j}$ is termed "error." For the r_{1} that gives a minimum error in the current range $\left(r_{1}{ }^{*}\right.$), a new range for r_{1} is chosen to be $r_{1}{ }^{*}+r_{\text {inc }}$ to $r_{1}{ }^{*}-r_{\text {inc }}$. The maximum value is kept no more than $R_{1 \text { max }}$ and the minimum value is never less than zero. A new increment is chosen by dividing the new range into n divisions. When the $r_{i n c}$ is less than some tolerance and the minimum error is found in the current range, the solution is in hand.

The FORTRAN code that implements this strategy is in Appendix A.

Newton-Raphson approach

This method solves a set of 4 nonlinear equations where the $\beta_{i j}$ and $v_{i j}$ are known and the r_{i} are unknown. Equation (6) is the set of equations; with correct $\underline{\underline{r}}$, the $f_{i}=0$.

$$
\begin{align*}
& f_{1}\left(r_{1}, r_{2}, r_{3}, r_{4}\right)=r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \beta_{12}-v_{12}^{2} \\
& f_{2}\left(r_{1}, r_{2}, r_{3}, r_{4}\right)=r_{2}^{2}+r_{3}^{2}-2 r_{2} r_{3} \cos \beta_{23}-v_{23}^{2} \\
& f_{3}\left(r_{1}, r_{2}, r_{3}, r_{4}\right)=r_{3}^{2}+r_{4}^{2}-2 r_{3} r_{4} \cos \beta_{34}-v_{34}^{2} \\
& f_{4}\left(r_{1}, r_{2}, r_{3}, r_{4}\right)=r_{4}^{2}+r_{1}^{2}-2 r_{4} r_{1} \cos \beta_{41}-v_{41}^{2} \tag{6}
\end{align*}
$$

Press et al. [1986] outline the method where a truncated Taylor series expansion approximates the f_{i} with the second and higher order terms dropped.

$$
\begin{equation*}
\left.\mathrm{f}_{\mathrm{i}}(\underline{r}+\delta \underline{r})=\mathrm{f}_{\mathrm{i}}(\underline{r})+\sum_{\mathrm{j}=1}^{4} \frac{\partial \mathrm{f}_{\mathrm{i}}}{\partial \mathrm{r}_{\mathrm{j}}} \delta \mathrm{r}_{\mathrm{j}}+\sigma \delta r^{2}\right) \tag{7}
\end{equation*}
$$

For an initial guess of \underline{r}, the left had sides of equation (6) are not usually zero. From equation (7), the $\delta \underline{r}$ are required that make $f_{i}(r+\delta r)$ zero given an initial $f_{i}(\underline{r})$. Equation (7) is a linear set of equations in $\delta \underline{r}$ that can be solved with $L U$ decomposition or any other method. As long as the initial guess of \underline{I} is close enough to the solution, the Newton-Raphson schemes converges nicely. Otherwise, the scheme may never converge or perhaps converge to the wrong solution.

In practice, the algorithm converges very well in a local neighborhood around the correct solution. If the guess is not in the neighborhood the scheme either does not converge or it converges to a wrong solution. The difficulty is in defining the neighborhood. In testing, sometimes an initial guess for \underline{r} of 50% of the solution would converge in less than 50 iterations. Other times, an initial guess within 5% of the solution would never converge. This uncertainty leaves the Newton-Raphson lacking without further inquiry.

The FORTRAN code for this scheme is in Appendix B.

References

Press, W. H., Flannery, B. P., Teukolsky, S A., and Vetterling, W. T., 1986, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, pp. 269.

Appendix A - FORTRAN code for direct approach

```
c
                                    target.for
    program target
c
c*********************************************************************************
c
c Routine find Ri for 4 vectors by guessling Rl, calculating R2, R3, and R4
c and applylng law of cosines to find residual errors. Ri that minimizes
c errors is best guess.
\begin{tabular}{lllllllll}
\(c\) & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{tabular}
c23456789012345678901234567890123456789012345678901234567890123456789012
```

```
real r2(2),r3(2), r4(2), err(2,2)
```

real r2(2),r3(2), r4(2), err(2,2)
real t(4,4), az(4), el(4), phi(4), c(4,4), s2(4,4)
real t(4,4), az(4), el(4), phi(4), c(4,4), s2(4,4)
real merit, wini, min2
real merit, wini, min2
open (unit=10, flle='target.Inp', status='old')
open (unit=10, flle='target.Inp', status='old')
c read input data from flle TARGET, INP
read (10,*) toldr1, tolmin I Conuerg tolerances
tmax = 0 I Initialize max value
do 5, 1=1, 3
do 5, j=i+1,4
read (10,*) t(i,j)
t(j, l)=t(i,j) | Symmetric
5 tmax = amaxi(tmax, t(i,j)) ! Max target vector
read (10,*) {az(i), i=1, 4) ! fzimuth angles
read (10,*) (el(i), i=1, 4) ! Elevation angles

```
c convert to radians from degrees
```

pl=3.14159 U Calculate pl
do 10 1=1,4
az(i)=az(i) * pl/180
el(i)=el(i)*pl/180
phl(i) = atan(tan(el(i))* cos(az(i)))

```
c calculate \(\cos\) and \(\sin\) of angles between radius vectors (cos \(=e 1\) dot \(e 2\) )
```

do 20, i=1, 3
do 20, j=i+1, 4
c(i,j) = sin(phi(i)) * sin(phi(j)) +
cos(phi(i))*\operatorname{cos(az(i)) * cos(phi(j))*\operatorname{cos(az(j)) +}}+\textrm{c}=\mp@code{(a)}
cos(phi(i))*sin(az(i)) * cos(phi(j))*sin(az(j))
c(j,i)=c(i,j)
wrlte(6,*)'c,t', i,j, c(i,j), t(i,j) ! echo input
s2(i,j)=1-c(i,j)**2 | sine squared of angle
20 s2(j,i)=s2(i,j)
| Symmetric

```
c limits on rl values
```

rmax = l.e20 l initial mmax
do 30, j=2,4
tmp = sqrt(s2(1,j)) ! slne of angle i-l
if (tmp .eq. 0) tmp=1.e-20 ! no/ by zero
tmp=t(1,j)/tmp: ! max ri due to r(j)

```
```

 If (tmp.eq. 0) tmp=1.e-20 ! no / byzero
 tmp = t(1,j)/tmp ! max ri due to r(j)
 rmax = amini(rmax, tmp) !max ri is min of 4
 continue
    ```
    30
c loop to find radius vector lengths - set increment based on limits
```

mmin = 0.
! rl minimum
rup = rmax
dmi = rmax/ 10 ! ri increment
m|n| = 1.e20 ! initial minimums
mln2 = 1.e20
35 write(6,*)'
write(6,*) 'dr1-> ', dr1,' rup-> ',rup, | counter

do 80, ri= rup, rmin, -dri | loop ris

```
c two values of \(\mathrm{r} 2, \mathrm{r} 3\), and r 4 for each rl
```

tmp2 $=t(1,2) * * 2-r 1 * * 2 * s 2(1,2)$
if (tmp2.lt. 0.) tmp2 $=0$.
t mp $3=t(1,3) * * 2-r 1 * * 2 * s 2(1,3)$
if (tmp3.It. 0.) tmp3=0.
$r 2(1)=r 1 * c(1,2)+s q r t(t m p 2)$
$r 2(2)=r 1 * c(1,2)-s q r t(t m p 2)$
$r 3(1)=r 1 * c(1,3)+\operatorname{sqnt}(t \operatorname{tap} 3)$
$r 3(2)=r 1^{*} c(1,3)-\operatorname{sqrt}(t \mathrm{mp} 3)$

```
c check 2-3 vector, 4 combinations
```

 do 60, i=1; 2
 do 60 j=1,2
    ```
            \(\operatorname{err}(i, j)=r 2(i) * * 2+r 3(j) * * 2-\)
                                    \(2 * r 2(i) * r 3(j) * c(2,3)-t(2,3) * * 2\)
                    \(t\) mp4 \(=t(1,4) * * 2-r)^{* * 2} * 32(1,4)\)
                    If (tmp4.it. 0, ) tmp4 \(=0\).
                    \(r 4(1)=r 1 * c(1,4)+\operatorname{sqrt}(t m p 4)\)
                    \(r 4(2)=r i * c(1,4)-\operatorname{sqrt}(t \operatorname{mp} 4)\)
                    do \(55 \mathrm{k}=1,2\)
                    err24 \(=\mathrm{r} 2(1) * * 2+r 4(k) * * 2-\quad\) ! vector 2-4
                        2*r2(i)*r4(k)*c(2,4)-t(2,4)**2
*
                    err34 \(=r 3(\mathrm{~J}) * * 2+r 4(k) * * 2-\quad\) ! vector \(3-4\)
                    2*r3(j)*r4(k)*c(3,4)-t(3,4)**2
c merit is sum of absolute 2-3, 2-4, and 3-4 vector errors
```

merit = abs(err24) + abs(err34) + abs(err(i,j))
if (merlt ,it.m|n|) then
m|n2 =m|n| ! save best
rif2=rif1
n2f2= n2f1
r3f2=r3f1
n4f2= r4f1
minl=merit
r|f|}=r
r2f1=r2(i) *
r3f1= r3(j)
r4f1= n4(k)
else

```
55
60
80
```

```
```

```
                        if (merit..It. mln2) then
```

```
```

 if (merit..It. mln2) then
    ```
```

```
                        if (merit..It. mln2) then
                min2 = merlt ! save second best
                min2 = merlt ! save second best
                min2 = merlt ! save second best
                    rlf2=r1
                    rlf2=r1
                    rlf2=r1
                        r2f2=r2(i)
                        r2f2=r2(i)
                        r2f2=r2(i)
                r3f2=r3(j)
                r3f2=r3(j)
                r3f2=r3(j)
                r4f2= r4(k)
                r4f2= r4(k)
                r4f2= r4(k)
            endif
            endif
            endif
                endif
```

 endif
    ```
                endif
```

```
                ontinue
```

 ontinue
    ```
                ontinue
            continue
            continue
            continue
continue
continue
continue
wrlte(6,*)'1-> ', rlf1, r2fl, r3f1, r4f1 l output
wrlte(6,*)'1-> ', rlf1, r2fl, r3f1, r4f1 l output
wrlte(6,*)'1-> ', rlf1, r2fl, r3f1, r4f1 l output
urite(6,*) 'merit 1-> ',minl
urite(6,*) 'merit 1-> ',minl
urite(6,*) 'merit 1-> ',minl
mplte(6,*) '2-> ', r1f2, r2f2, r3f2, r4f2
mplte(6,*) '2-> ', r1f2, r2f2, r3f2, r4f2
mplte(6,*) '2-> ', r1f2, r2f2, r3f2, r4f2
#rlte(6,*) 'merit 2-> ',min2
#rlte(6,*) 'merit 2-> ',min2
#rlte(6,*) 'merit 2-> ',min2
if (dri ,le. toldrl ,or. minl ,le. tolmin) stop ! within tol?
if (dri ,le. toldrl ,or. minl ,le. tolmin) stop ! within tol?
if (dri ,le. toldrl ,or. minl ,le. tolmin) stop ! within tol?
mup = amaxi(r|f1, r|f2) + dri ! newmax
mup = amaxi(r|f1, r|f2) + dri ! newmax
mup = amaxi(r|f1, r|f2) + dri ! newmax
if (rup .gt. rmax) rup=rmax
if (rup .gt. rmax) rup=rmax
if (rup .gt. rmax) rup=rmax
rm|n=aminl(rif1, r1f2)-dri i newmin
rm|n=aminl(rif1, r1f2)-dri i newmin
rm|n=aminl(rif1, r1f2)-dri i newmin
dr1 = (rup-rmin)/10.
dr1 = (rup-rmin)/10.
dr1 = (rup-rmin)/10.
! new increment
! new increment
! new increment
go to 35
go to 35
go to 35
! new range & increment
! new range & increment
! new range & increment
end
```

Appendix B - FORTRAN code for Newton-Raphson approach
(Code in all CAPS is from Press [1986])

```
c
***************************************************************************
c
    program root
c
c
c Program to find radius vector lengths for comet geometry
    real r(4), az(4), el(4), phi(4)
    Include 'root.lnc' | Common for Musrfun"
    common/dim/t(4,4),c(4,4), s(4,4), betasum
c open input file
    open (unit=10, file='root.lnp', status='old')
c read input data from file ROOT.DRT
    read(10,*) tolx, tolf, nirial ! Tolerance x & f, max. Iters.
    do 5, i=1, 3
                do 5, j=i+1,4
            read (10,*) t(1, |) : Target vector lengths
    5 t(l, I) = t(I, j)
    read (10,*) faz(i), i=1, 4) | fzimuth angles
    read (10,*) (el(i), i=1, 4) I Elevation angles
c convert to madians from degrees
    pi=3.14159
                                    ! PI
    do }10\quad1=1,
        az(1)=az(1) * pi/180
        el(i)=el(i) * pl/180
    10
    phi(i)=atan(tan(el(i))*\operatorname{cos(az(i)))}
c calculate cos and sin of angles between radius vectors (cos = e1 dot e2)
    do 20, i=1, 3
        do 20, j=i+1, 4
            c(i,j) = sin(phi(i)) * sin(phi(j)) +
```



```
            e(j,i)=c(i,j) ! Symmetric
            s(i,j)=sqrt(i-c(i,j)**2) ! Sine
    s(j,l)=s(i,j) ! Symmetric
c maximum radius vectors and initial r
    fac=1.0
    22
    do 30 i=1, 4
        rmax = i.e20 ! large to start
        do 25 j=1,4
            lf (j .eq. i) go to 25 ! no angle here
```

```
            if (s(i, j) .eq. 0.) go to 25
            test = t(l,j)/s(i,j)
            mmax = amini (rmax, test)
    25 continue
            r(i)= fac * rmax | start at 80% max
    30 continue
    write (6,*) 'Initial r(i)'
    write (6,*) (r(i), i=1, 4)
c call solver
    nt = ntrial
    call mnewt(nt, r, 4, tolx, tolf)
    if (nt .eq. 0) then
        fac=fac - 0.1
        if (fac .eq. 0) stop | plum run out
        go to 22
    endif
c check results
    do 50,i=1, 3
        do 50, j=i+1, 4
            tc=sqrt('r(i)**2 +r(j)**2-2*r(i)*r(j)*c(i,j))
            mrite(6,*)'in',t(i,j), 'out', to
    mrite(6,*) 'Rs ', (r(1), i=1, 4)
    stop
    end
```

```
SUBROUTINE MNEMT(NTRIGL,X,N,TOLX,TOLF)
PARAMETER (NP=4)
DIMENSION X(NP), RLPHA(NP,NP), BETA(NP), IHDX(NP)
DO 13 K=1, NTRIAL
CALL USAFUN(X,ALPHA,BETA)
ERRF=0.
0O || |=1,N
ERAF=ERRF + ABS(BETA(1))
    CONTINUE
    IF(ERRF.LE. TOLF)RETURN
    CRLL LUDCMP(RLPHA,N,NP,I INDX,D)
    CALL LUBKSB(ALPHA, H,NP, INDX, BETA)
    ERRX=0.
    DO 12 l=1,N
        ERRX=ERRX+RBS(BETA(I))
        X(I)=X(I) + BETA(I)
    CONTINUE
    IF(ERRX.LE.TOLX)RETURN
CONTINUE
RETURN
END
```

```
SUBROUTINE LUDCMP(A,N,NP,INDX,D)
PARAMETER (NMAX=100,T|NY=1.OE-20)
DIMENSION A(NP,NP),INDX(N),UU(NMAX)
D=1.
DO 12 l=1,N
    ARMAX=0.
    DO | J=1,N
        IF (ABS(A(I, J)).GT, AAMRX) AAMAX=ABS(A(I,J))
        CONTINUE
        IF (ARMAX,EQ.O.) PAUSE 'Singular matrix.'
        UU(1)=1./ARMAX
CONTINUE
00 19 J=1,N
    IF (J.GT.I) THEN
        00 14 I=1,J-1
            SUM=A (I, J)
            IF (1.GT.1)THEN
                DO 13 K=1,1-1
                    SUM=SUM-A(I,K)*A(K,J)
                contimue
                A(I,J)=SUM
            ENDIF
        CONTINUE
    ENDIF
    ARMAX=0.
    DO 16 I=J,N
        SUM=A(1,J)
        IF (J.GT.I)THEN
            DO 15 K=1,J-1
                SUM=SUM-A(I,K)*A(K,J)
            CONTINUE*
            A(I, J)=S UM
        ENDIF
        DUM=UU(I)*ABS(SUM)
            IF (DUM.GE.ARMAX) THEN
                1MAX=1
                    AAMRK=DUM
            ENDIF
    CONTINUE
        IF (J.NE.IMAX)THEN
            DO 17 K=1,N
                DUM=A(IHAX,K)
                A(IMAX,K)=A (J,K)
                A(J,K)=DUM
        CONTINUE
        D=-D
        UU(IMAK)=UU(J)
        ENDIF
        INDX(J) = I MAX
        IF(J.NE.N)THEN
            IF(A(J,J).EQ.O.)R(J,J)=TINY
            DUM=1./A(J,J)
            OO 18 l=J+1,N
                A(l, J)=A(I, J)*DUM
            cONTINUE
        ENDIF
    CONTINUE
    IF(A(N,N).EQ.O.)A(N,N)=TINY:*
    RETURN
    END
```

SUBROUTINE LUBKSB ($A, N, N P, \operatorname{INDX,B}$)
DIMENSION A(NP,NP), INDX(N), B(N)
$11=0$
$00 \quad 12 \quad 1=1, N$
$L L=1 N D X(1)$
$S U M=B(L L)$
$B(L L)=B(I)$
IF (11.NE.O)THEN
DO $11 \mathrm{~J}=11,1-1$ $S \cup M=S U M-A(1, J) * B(J)$
CONTINIJE
ELSE IF (SUM.NE.O.) THEN
$|\mid=1$
ENDIF
$B(1)=$ SUM
continue
DO $14 \quad 1=N, 1,-1$
$S U M=B(1)$
IF (I.LT.N)THEN
DO $13 \mathrm{~J}=\mathrm{I}+1$, H $S \cup M=S U M-A(1, J) * B(J)$
CONTINUE
ENDIF
$B(1)=S U M / A(1,1)$
14 CONTINUE
RETURN
END

```
c
c
    subroutine usrfun (r, alpha, beta)
C
c
    Include 'root.inc' 
c calculate functions and derluatives from law of cosines
    beta(1)=-(r(1)*r(1)+r(2)*r(2)-}\quad11-
* 2*r(1)*r(2)*c(1,2)-t(1,2)*t(1,2))
    alpha(1,1)=2*r(1) - 2*c(1, 2)*r(2)
    alpha(1,2)=2*r(2) - 2*c(1, 2)*r(1)
    alpha(1,3)=0
    alpha(1,4)=0
    beta(2)=-(r(1)*r(1)+r(3)*r(3)-}\quad! 1-3
# 2*r(1)*r(3)*c(1,3)-t(1,3)*t(1,3))
    alpha(2,2)=0
    alpha(2,3)=2*r(3)-2*c(1,3)*r(1)
    alpha(2,1)=2*r(1) - 2*c(1, 3)*r3
    alpha(2,4)=0
    beta(3)=-(r(3)*r(3) +r(4)*r(4) - I 3-4
* 2*r(3)*r(4)*c(3,4)-t(3,4)*t(3,4))
    alpha(3,3)=2*r(3)-2*c(3,4)*r(4)
    alpho(3,4)=2*r(4)-2*c(3,4)*r(3)
    alpho(3,1)=0
    alpha(3,2)=-0
```



```
# 2*r(4)*r(1)*c(2,4)-t(2,4)*t(2,4))
    alpha(4,2)=2*rr(2)-2*c(2,4)*rr(4)
    alpha(4,4)=2*r(4)-2*c(2,4)*rr(2)
    alpha(4,1)=0
    alpha(4,3)=0
    betasum = 0 ! Convergence
    write(6,*) 'r-> ', (r(i), i=1, 4)
    mrite(6,*) 'beta-> ', (beta(i), l=1, 4)
    raturn
    end
```

