2,037 research outputs found

    Time-convolutionless master equation for quantum dots: Perturbative expansion to arbitrary order

    Full text link
    The master equation describing the non-equilibrium dynamics of a quantum dot coupled to metallic leads is considered. Employing a superoperator approach, we derive an exact time-convolutionless master equation for the probabilities of dot states, i.e., a time-convolutionless Pauli master equation. The generator of this master equation is derived order by order in the hybridization between dot and leads. Although the generator turns out to be closely related to the T-matrix expressions for the transition rates, which are plagued by divergences, in the time-convolutionless generator all divergences cancel order by order. The time-convolutionless and T-matrix master equations are contrasted to the Nakajima-Zwanzig version. The absence of divergences in the Nakajima-Zwanzig master equation due to the nonexistence of secular reducible contributions becomes rather transparent in our approach, which explicitly projects out these contributions. We also show that the time-convolutionless generator contains the generator of the Nakajima-Zwanzig master equation in the Markov approximation plus corrections, which we make explicit. Furthermore, it is shown that the stationary solutions of the time-convolutionless and the Nakajima-Zwanzig master equations are identical. However, this identity neither extends to perturbative expansions truncated at finite order nor to dynamical solutions. We discuss the conditions under which the Nakajima-Zwanzig-Markov master equation nevertheless yields good results.Comment: 13 pages + appendice

    Excitation energy transfer: Study with non-Markovian dynamics

    Full text link
    In this paper, we investigate the non-Markovian dynamics of a model to mimic the excitation energy transfer (EET) between chromophores in photosynthesis systems. The numerical path integral method is used. This method includes the non-Markovian effects of the environmental affects and it does not need the perturbation approximation in solving the dynamics of systems of interest. It implies that the coherence helps the EET between chromophores through lasting the transfer time rather than enhances the transfer rate of the EET. In particular, the non-Markovian environment greatly increase the efficiency of the EET in the photosynthesis systems.Comment: 5 pages, 5 figure

    Decoherence in a superconducting flux qubit with a pi-junction

    Get PDF
    We consider the use of a pi-junction for flux qubits to realize degenerate quantum levels without external magnetic field. On the basis of the Caldeira-Leggett model, we derive an effective spin-Boson model, and study decoherece of this type of qubits. We estimate the dephasing time by using parameters from recent experiments of SIFS junctions, and show that high critical current and large subgap resistance are required for the pi-junction to realize a long coherent time.Comment: 5 pages, 2 figure

    Circuit theory for decoherence in superconducting charge qubits

    Full text link
    Based on a network graph analysis of the underlying circuit, a quantum theory of arbitrary superconducting charge qubits is derived. Describing the dissipative elements of the circuit with a Caldeira-Leggett model, we calculate the decoherence and leakage rates of a charge qubit. The analysis includes decoherence due to a dissipative circuit element such as a voltage source or the quasiparticle resistances of the Josephson junctions in the circuit. The theory presented here is dual to the quantum circuit theory for superconducting flux qubits. In contrast to spin-boson models, the full Hilbert space structure of the qubit and its coupling to the dissipative environment is taken into account. Moreover, both self and mutual inductances of the circuit are fully included.Comment: 8 pages, 3 figures; v2: published version; typo in Eq.(30) corrected, minor changes, reference adde

    Multiple-time correlation functions for non-Markovian interaction: Beyond the Quantum Regression Theorem

    Full text link
    Multiple time correlation functions are found in the dynamical description of different phenomena. They encode and describe the fluctuations of the dynamical variables of a system. In this paper we formulate a theory of non-Markovian multiple-time correlation functions (MTCF) for a wide class of systems. We derive the dynamical equation of the {\it reduced propagator}, an object that evolve state vectors of the system conditioned to the dynamics of its environment, which is not necessarily at the vacuum state at the initial time. Such reduced propagator is the essential piece to obtain multiple-time correlation functions. An average over the different environmental histories of the reduced propagator permits us to obtain the evolution equations of the multiple-time correlation functions. We also study the evolution of MTCF within the weak coupling limit and it is shown that the multiple-time correlation function of some observables satisfy the Quantum Regression Theorem (QRT), whereas other correlations do not. We set the conditions under which the correlations satisfy the QRT. We illustrate the theory in two different cases; first, solving an exact model for which the MTCF are explicitly given, and second, presenting the results of a numerical integration for a system coupled with a dissipative environment through a non-diagonal interaction.Comment: Submitted (04 Jul 04

    Dephasing of a superconducting flux qubit

    Full text link
    In order to gain a better understanding of the origin of decoherence in superconducting flux qubits, we have measured the magnetic field dependence of the characteristic energy relaxation time (T1T_1) and echo phase relaxation time (T2echoT_2^{\rm echo}) near the optimal operating point of a flux qubit. We have measured T2echoT_2^{\rm echo} by means of the phase cycling method. At the optimal point, we found the relation T2echo2T1T_2^{\rm echo}\approx 2T_1. This means that the echo decay time is {\it limited by the energy relaxation} (T1T_1 process). Moving away from the optimal point, we observe a {\it linear} increase of the phase relaxation rate (1/T2echo1/T_{2}^{\rm echo}) with the applied external magnetic flux. This behavior can be well explained by the influence of magnetic flux noise with a 1/f1/f spectrum on the qubit

    Dynamics of quantum dissipation systems interacting with bosonic canonical bath: Hierarchical equations of motion approach

    Full text link
    A nonperturbative theory is developed, aiming at an exact and efficient evaluation of a general quantum system interacting with arbitrary bath environment at any temperature and in the presence of arbitrary time-dependent external fields. An exact hierarchical equations of motion formalism is constructed on the basis of calculus-on-path-integral algorithm, via the auxiliary influence generating functionals related to the interaction bath correlation functions in a parametrization expansion form. The corresponding continued-fraction Green's functions formalism for quantum dissipation is also presented. Proposed further is the principle of residue correction, not just for truncating the infinite hierarchy, but also for incorporating the small residue dissipation that may arise from the practical difference between the true and the parametrized bath correlation functions. The final residue-corrected hierarchical equations of motion can therefore be used practically for the evaluation of arbitrary dissipative quantum systems.Comment: 12 pages, submitted to PR

    Quantum Smoluchowski equation: A systematic study

    Full text link
    The strong friction regime at low temperatures is analyzed systematically starting from the formally exact path integral expression for the reduced dynamics. This quantum Smoluchowski regime allows for a type of semiclassical treatment in the inverse friction strength so that higher order quantum corrections to the original quantum Smoluchowski equation [PRL 87, 086802 (2001), PRL 101, 11903 (2008)] can be derived. Drift and diffusion coefficients are determined by the equilibrium distribution in position and are directly related to the corresponding action of extremal paths and fluctuations around them. It is shown that the inclusion of higher order corrections reproduces the quantum enhancement above crossover for the decay rate out of a metastable well exactly.Comment: 15 pages, 4 figure

    Non-additivity of decoherence rates in superconducting qubits

    Get PDF
    We show that the relaxation and decoherence rates 1/T_1 and 1/T_2 of a qubit coupled to several noise sources are in general not additive, i.e., that the total rates are not the sums of the rates due to each individual noise source. To demonstrate this, we calculate the relaxation and pure dephasing rates 1/T_1 and 1/T_\phi of a superconducting (SC) flux qubit in the Born-Markov approximation in the presence of several circuit impedances Z_i using network graph theory and determine their deviation from additivity (the mixing term). We find that there is no mixing term in 1/T_\phi and that the mixing terms in 1/T_1 and 1/T_2 can be positive or negative, leading to reduced or enhanced relaxation and decoherence times T_1 and T_2. The mixing term due to the circuit inductance L at the qubit transition frequency \omega_{01} is generally of second order in \omega_{01}L/Z_i, but of third order if all impedances Z_i are pure resistances. We calculate T_{1,2} for an example of a SC flux qubit coupled to two impedances.Comment: 5 pages, 2 figure
    corecore