2,341 research outputs found

    Nonadiabatic Dynamics in Open Quantum-Classical Systems: Forward-Backward Trajectory Solution

    Full text link
    A new approximate solution to the quantum-classical Liouville equation is derived starting from the formal solution of this equation in forward-backward form. The time evolution of a mixed quantum-classical system described by this equation is obtained in a coherent state basis using the mapping representation, which expresses NN quantum degrees of freedom in a 2N-dimensional phase space. The solution yields a simple non-Hamiltonian dynamics in which a set of NN coherent state coordinates evolve in forward and backward trajectories while the bath coordinates evolve under the influence of the mean potential that depends on these forward and backward trajectories. It is shown that the solution satisfies the differential form of the quantum-classical Liouville equation exactly. Relations to other mixed quantum-classical and semi-classical schemes are discussed.Comment: 28 pages, 1 figur

    Quantum theory of the low-frequency linear susceptibility of interferometer-type superconducting qubits

    Full text link
    We use the density matrix formalism to analyze the interaction of interferometer-type superconducting qubits with a high quality tank circuit, which frequency is well below the gap frequency of a qubit. We start with the ground state characterization of the superconducting flux and charge qubits. Then, by making use of a dressed state approach we describe the qubits' spectroscopy when the qubit is irradiated by a microwave field which is tuned to the gap frequency. The last section of the paper is devoted to continuous monitoring of qubit states by using a DC SQUID in the inductive mode.Comment: 11 pages, 5 figures; the title and abstract are slightly changed; several typos are corrected; in order to make our argumentation more clear we added some comments in the introduction and other section

    Multiple-time correlation functions for non-Markovian interaction: Beyond the Quantum Regression Theorem

    Full text link
    Multiple time correlation functions are found in the dynamical description of different phenomena. They encode and describe the fluctuations of the dynamical variables of a system. In this paper we formulate a theory of non-Markovian multiple-time correlation functions (MTCF) for a wide class of systems. We derive the dynamical equation of the {\it reduced propagator}, an object that evolve state vectors of the system conditioned to the dynamics of its environment, which is not necessarily at the vacuum state at the initial time. Such reduced propagator is the essential piece to obtain multiple-time correlation functions. An average over the different environmental histories of the reduced propagator permits us to obtain the evolution equations of the multiple-time correlation functions. We also study the evolution of MTCF within the weak coupling limit and it is shown that the multiple-time correlation function of some observables satisfy the Quantum Regression Theorem (QRT), whereas other correlations do not. We set the conditions under which the correlations satisfy the QRT. We illustrate the theory in two different cases; first, solving an exact model for which the MTCF are explicitly given, and second, presenting the results of a numerical integration for a system coupled with a dissipative environment through a non-diagonal interaction.Comment: Submitted (04 Jul 04

    Few-Qubit lasing in circuit QED

    Full text link
    Motivated by recent experiments, which demonstrated lasing and cooling of the electromagnetic modes in a resonator coupled to a superconducting qubit, we describe the specific mechanisms creating the population inversion, and we study the spectral properties of these systems in the lasing state. Different levels of the theoretical description, i.e., the semi-classical and the semi-quantum approximation, as well as an analysis based on the full Liouville equation are compared. We extend the usual quantum optics description to account for strong qubit-resonator coupling and include the effects of low-frequency noise. Beyond the lasing transition we find for a single- or few-qubit system the phase diffusion strength to grow with the coupling strength, which in turn deteriorates the lasing state.Comment: Prepared for the proceedings of the Nobel Symposium 2009, Qubits for future quantum computers, May 2009 in Goeteborg, Sweden. Published versio

    Quantum Smoluchowski equation: A systematic study

    Full text link
    The strong friction regime at low temperatures is analyzed systematically starting from the formally exact path integral expression for the reduced dynamics. This quantum Smoluchowski regime allows for a type of semiclassical treatment in the inverse friction strength so that higher order quantum corrections to the original quantum Smoluchowski equation [PRL 87, 086802 (2001), PRL 101, 11903 (2008)] can be derived. Drift and diffusion coefficients are determined by the equilibrium distribution in position and are directly related to the corresponding action of extremal paths and fluctuations around them. It is shown that the inclusion of higher order corrections reproduces the quantum enhancement above crossover for the decay rate out of a metastable well exactly.Comment: 15 pages, 4 figure

    Overdamping by weakly coupled environments

    Get PDF
    A quantum system weakly interacting with a fast environment usually undergoes a relaxation with complex frequencies whose imaginary parts are damping rates quadratic in the coupling to the environment, in accord with Fermi's ``Golden Rule''. We show for various models (spin damped by harmonic-oscillator or random-matrix baths, quantum diffusion, quantum Brownian motion) that upon increasing the coupling up to a critical value still small enough to allow for weak-coupling Markovian master equations, a new relaxation regime can occur. In that regime, complex frequencies lose their real parts such that the process becomes overdamped. Our results call into question the standard belief that overdamping is exclusively a strong coupling feature.Comment: 4 figures; Paper submitted to Phys. Rev.

    Microstructure of the Local Interstellar Cloud and the Identification of the Hyades Cloud

    Get PDF
    We analyze high-resolution UV spectra of the Mg II h and k lines for 18 members of the Hyades Cluster to study inhomogeneity along these proximate lines of sight. The observations were taken by the Space Telescope Imaging Spectrograph (STIS) instrument on board the Hubble Space Telescope (HST). Three distinct velocity components are observed. All 18 lines of sight show absorption by the Local Interstellar Cloud (LIC), ten stars show absorption by an additional cloud, which we name the Hyades Cloud, and one star exhibits a third absorption component. The LIC absorption is observed at a lower radial velocity than predicted by the LIC velocity vector derived by Lallement & Bertin (1992) and Lallement et al. (1995), (v(predicted LIC) - v(observed LIC) = 2.9 +/- 0.7 km/s), which may indicate a compression or deceleration at the leading edge of the LIC. We propose an extention of the Hyades Cloud boundary based on previous HST observations of other stars in the general vicinity of the Hyades, as well as ground-based Ca II observations. We present our fits of the interstellar parameters for each absorption component. The availability of 18 similar lines of sight provides an excellent opportunity to study the inhomogeneity of the warm, partially ionized local interstellar medium (LISM). We find that these structures are roughly homogeneous. The measured Mg II column densities do not vary by more than a factor of 2 for angular separations of < 8 degrees, which at the outer edge of the LIC correspond to physical separations of < 0.6 pc.Comment: 35 pages, 11 figures, AASTEX v.5.0 plus EPSF extensions in mkfig.sty; accepted by Ap

    Output spectrum of a measuring device at arbitrary voltage and temperature

    Full text link
    We calculate the noise spectrum of the electrical current in a quantum point contact which is used for continuous measurements of a two-level system (qubit). We generalize the previous results obtained for the regime of high transport voltages (when VV is much larger than the qubit's energy level splitting BB (we put e==1e=\hbar=1)) to the case of arbitrary voltages and temperatures. When VBV \sim B the background output spectrum is essentially asymmetric in frequency, i.e., it is no longer classical. Yet, the spectrum of the amplified signal, i.e., the two coherent peaks at ω=±B\omega=\pm B is still symmetric. In the emission (negative frequency) part of the spectrum the coherent peak can be 8 times higher than the background pedestal. Alternatively, this ratio can be seen in the directly measureable {\it excess} noise. For V<BV < B and T=0 the coherent peaks do not appear at all. We relate these results to the properties of linear amplifiers.Comment: 7 pages, 5 figures, the results generalized for arbitrary angle between the magnetic field and the observed component of the spin, minor corrections and typo

    Gas Absorption in the KH 15D System: Further Evidence for Dust Settling in the Circumbinary Disk

    Get PDF
    Na I D lines in the spectrum of the young binary KH 15D have been analyzed in detail. We find an excess absorption component that may be attributed to foreground interstellar absorption, and to gas possibly associated with the solids in the circumbinary disk. The derived column density is log N_NaI = 12.5 cm^-2, centered on a radial velocity that is consistent with the systemic velocity. Subtracting the likely contribution of the ISM leaves log N_NaI ~ 12.3 cm^-2. There is no detectable change in the gas column density across the "knife edge" formed by the opaque grain disk, indicating that the gas and solids have very different scale heights, with the solids being highly settled. Our data support a picture of this circumbinary disk as being composed of a very thin particulate grain layer composed of millimeter-sized or larger objects that are settled within whatever remaining gas may be present. This phase of disk evolution has been hypothesized to exist as a prelude to the formation of planetesimals through gravitational fragmentation, and is expected to be short-lived if much gas were still present in such a disk. Our analysis also reveals the presence of excess Na I emission relative to the comparison spectrum at the radial velocity of the currently visible star that plausibly arises within the magnetosphere of this still-accreting young star.Comment: Accepted for publication in ApJ, 23 pages, 6 figure
    corecore