3,528 research outputs found

    Intelligent tutoring systems for space applications

    Get PDF
    Artificial Intelligence has been used in many space applications. Intelligent tutoring systems (ITSs) have only recently been developed for assisting training of space operations and skills. An ITS at Southwest Research Institute is described as an example of an ITS application for space operations, specifically, training console operations at mission control. A distinction is made between critical skills and knowledge versus routine skills. Other ITSs for space are also discussed and future training requirements and potential ITS solutions are described

    Cavity QED in superconducting circuits: susceptibility at elevated temperatures

    Get PDF
    We study the properties of superconducting electrical circuits, realizing cavity QED. In particular we explore the limit of strong coupling, low dissipation, and elevated temperatures relevant for current and future experiments. We concentrate on the cavity susceptibility as it can be directly experimentally addressed, i.e., as the impedance or the reflection coefficient of the cavity. To this end we investigate the dissipative Jaynes-Cummings model in the strong coupling regime at high temperatures. The dynamics is investigated within the Bloch-Redfield formalism. At low temperatures, when only the few lowest levels are occupied the susceptibility can be presented as a sum of contributions from independent level-to-level transitions. This corresponds to the secular (random phase) approximation in the Bloch-Redfield formalism. At temperatures comparable to and higher than the oscillator frequency, many transitions become important and a multiple-peak structure appears. We show that in this regime the secular approximation breaks down, as soon as the peaks start to overlap. In other words, the susceptibility is no longer a sum of contributions from independent transitions. We treat the dynamics of the system numerically by exact diagonalization of the Hamiltonian of the qubit plus up to 200 states of the oscillator. We compare the results obtained with and without the secular approximation and find a qualitative discrepancy already at moderate temperatures.Comment: 7 pages, 6 figure

    Time-convolutionless master equation for quantum dots: Perturbative expansion to arbitrary order

    Full text link
    The master equation describing the non-equilibrium dynamics of a quantum dot coupled to metallic leads is considered. Employing a superoperator approach, we derive an exact time-convolutionless master equation for the probabilities of dot states, i.e., a time-convolutionless Pauli master equation. The generator of this master equation is derived order by order in the hybridization between dot and leads. Although the generator turns out to be closely related to the T-matrix expressions for the transition rates, which are plagued by divergences, in the time-convolutionless generator all divergences cancel order by order. The time-convolutionless and T-matrix master equations are contrasted to the Nakajima-Zwanzig version. The absence of divergences in the Nakajima-Zwanzig master equation due to the nonexistence of secular reducible contributions becomes rather transparent in our approach, which explicitly projects out these contributions. We also show that the time-convolutionless generator contains the generator of the Nakajima-Zwanzig master equation in the Markov approximation plus corrections, which we make explicit. Furthermore, it is shown that the stationary solutions of the time-convolutionless and the Nakajima-Zwanzig master equations are identical. However, this identity neither extends to perturbative expansions truncated at finite order nor to dynamical solutions. We discuss the conditions under which the Nakajima-Zwanzig-Markov master equation nevertheless yields good results.Comment: 13 pages + appendice

    Nonadiabatic Dynamics in Open Quantum-Classical Systems: Forward-Backward Trajectory Solution

    Full text link
    A new approximate solution to the quantum-classical Liouville equation is derived starting from the formal solution of this equation in forward-backward form. The time evolution of a mixed quantum-classical system described by this equation is obtained in a coherent state basis using the mapping representation, which expresses NN quantum degrees of freedom in a 2N-dimensional phase space. The solution yields a simple non-Hamiltonian dynamics in which a set of NN coherent state coordinates evolve in forward and backward trajectories while the bath coordinates evolve under the influence of the mean potential that depends on these forward and backward trajectories. It is shown that the solution satisfies the differential form of the quantum-classical Liouville equation exactly. Relations to other mixed quantum-classical and semi-classical schemes are discussed.Comment: 28 pages, 1 figur

    Report of Federal Legislative Committee

    Get PDF
    There has been no occasion to call the Committee into actual session. Such business as was transacted was accomplished by correspondence. The only matter referred to tins Committee had to do with a proposal to make uniform the rules relating to admission of practitioners to the bar of the federal courts. A voluminous file was transmitted to the Chairman, containing recommendations as to this matter which were mainly negative. The view expressed therein was that there was so much difference in circumstances among federal courts in various parts of the country that it would be wisest not to attempt any uniform rules which should apply to all, but to leave the matter as it now is, under the control of the judges presiding m the respective districts

    A spin-boson thermal rectifier

    Full text link
    Rectification of heat transfer in nanodevices can be realized by combining the system inherent anharmonicity with structural asymmetry. we analyze this phenomenon within the simplest anharmonic system -a spin-boson nanojunction model. We consider two variants of the model that yield, for the first time, analytical solutions: a linear separable model in which the heat reservoirs contribute additively, and a non-separable model suitable for a stronger system-bath interaction. Both models show asymmetric (rectifying) heat conduction when the couplings to the heat reservoirs are different.Comment: 5 pages, 3 figures, RevTeX

    Cooking the Books: the Golem and the Ethics of Biotechnology

    Get PDF
    This working paper has three modest aims: (1) To present, in a succinct and accessible but not distorted fashion, ancient religious Jewish sources about a human-like entity called the golem and some of their later interpretations; (2) To distinguish our sources from the popular modern representation of the golem in Ashkenazi Jewish fiction and folktales, which has played a greater role in recent Jewish contributions to bioethics; (3) To suggest why our ancient sources on the golem, if we try to locate them in their own interpretive contexts, have a new relevance to anyone who is curious about the ethical significance of humanity’s rapidly increasing ability to intervene in biological creation. The paper is organized in three parts. The introduction offers a critical synopsis of dominant ways that experts in Jewish bioethics have recently invoked the golem. As will be shown, these experts have a high degree of consensus about the golem’s significance, they refer to a narrow range of sources, and they use a similar interpretive procedure to determine the meaning of their sources. These facts are related. They result in an interpretation of the golem that equates one nineteenth-century Eastern European legend with an image spanning millennia, scores of texts, and much of the Western world. Key variables, with divergent implications, have been lost in this equation. Therefore, in the second section, a broader picture of the golem is provided. Beginning with the noun’s sole appearance in the Bible (Psalm 139) and looking at a few rabbinic and Jewish mystical writings, we will use the work of scholars and close readings of canonical sources to reveal several neglected ways that Jewish sources have used the golem image in order to reflect upon the ethics of creation. In our conclusion, we will summarize the empirical and methodological consequences of these readings. Rather than pronounce on what the golem tells scientists (not) to do with biology, we will synthesize new ways that this image might help them, or any open-minded reader, to think about this vital issue

    Excitation energy transfer: Study with non-Markovian dynamics

    Full text link
    In this paper, we investigate the non-Markovian dynamics of a model to mimic the excitation energy transfer (EET) between chromophores in photosynthesis systems. The numerical path integral method is used. This method includes the non-Markovian effects of the environmental affects and it does not need the perturbation approximation in solving the dynamics of systems of interest. It implies that the coherence helps the EET between chromophores through lasting the transfer time rather than enhances the transfer rate of the EET. In particular, the non-Markovian environment greatly increase the efficiency of the EET in the photosynthesis systems.Comment: 5 pages, 5 figure

    Decoherence in a superconducting flux qubit with a pi-junction

    Get PDF
    We consider the use of a pi-junction for flux qubits to realize degenerate quantum levels without external magnetic field. On the basis of the Caldeira-Leggett model, we derive an effective spin-Boson model, and study decoherece of this type of qubits. We estimate the dephasing time by using parameters from recent experiments of SIFS junctions, and show that high critical current and large subgap resistance are required for the pi-junction to realize a long coherent time.Comment: 5 pages, 2 figure
    • …
    corecore