4 research outputs found

    Sensitivity Modeling Study for an Ozone Occurrence during the 1996 Paso Del Norte Ozone Campaign

    Get PDF
    Surface ozone pollution has been a persistent environmental problem in the US and Europe as well as the developing countries. A key prerequisite to find effective alternatives to meeting an ozone air quality standard is to understand the importance of local anthropogenic emissions, the significance of biogenic emissions, and the contribution of long-range transport. In this study, an air quality modeling system that includes chemistry and transport, CMAQ, an emission processing model, SMOKE, and a mesoscale numerical meteorological model, WRF, has been applied to investigate an ozone event occurring during the period of the 1996 Paso del Norte Ozone Campaign. The results show that the modeling system exhibits the capability to simulate this high ozone occurrence by providing a comparable temporal variation of surface ozone concentration at one station and to capture the spatial evolution of the event. Several sensitivity tests were also conducted to identify the contributions to high surface ozone concentration from eight VOC subspecies, biogenic VOCs, anthropogenic VOCs and long-range transportation of ozone and its precursors. It is found that the reductions of ETH, ISOP, PAR, OLE and FORM help to mitigate the surface ozone concentration, and like anthropogenic VOCs, biogenic VOC plays a nonnegligible role in ozone formation. But for this case, long-range transport of ozone and its precursors appears to produce an insignificant contribution

    Application of Machine Learning to Study the Association between Environmental Factors and COVID-19 Cases in Mississippi, USA

    No full text
    Because of the large-scale impact of COVID-19 on human health, several investigations are being conducted to understand the underlying mechanisms affecting the spread and transmission of the disease. The present study aimed to assess the effects of selected environmental factors such as temperature, humidity, dew point, wind speed, pressure, and precipitation on the daily increase in COVID-19 cases in Mississippi, USA, during the period from January 2020 to August 2021. A machine learning model was used to predict COVID-19 cases and implement preventive measures if necessary. A statistical analysis using Python programming showed that the humidity ranged from 56% to 78%, and COVID-19 cases increased from 634 to 3546. Negative correlations were found between temperature and COVID-19 incidence rate (−0.22) and between humidity and COVID-19 incidence rate (−0.15). The linear regression model showed the model linear coefficients to be 0.92 and −1.29, respectively, with the intercept being 55.64. For the test dataset, the R2 score was 0.053. The statistical analysis and machine learning show that there is no linear dependence of temperature and humidity with the COVID-19 incidence rate

    An improved method for estimating ice line for zonal energy balance climate models

    No full text
    In this article we consider an energy balance climate model. For a given ice line, we use spectral method to derive an approximation of the solution. Then we propose a method to update the ice line and to derive an updated approximation of the solution. We compare the difference between the approximation with fixed ice line and the approximation with updated ice line by looking at the temperature profile at some specific locations and times. The significance of the method to update the ice line is that it is model free. Therefore, it can be used in other climate models
    corecore