11,987 research outputs found

    On the existence of chaotic circumferential waves in spinning disks

    Full text link
    We use a third-order perturbation theory and Melnikov's method to prove the existence of chaos in spinning circular disks subject to a lateral point load. We show that the emergence of transverse homoclinic and heteroclinic points respectively lead to a random reversal in the traveling direction of circumferential waves and a random phase shift of magnitude π\pi for both forward and backward wave components. These long-term phenomena occur in imperfect low-speed disks sufficiently far from fundamental resonances.Comment: 8 pages, 5 figures, to appear in CHAOS (Volume 17, Issue 2, June 2007

    Titrimetric Determination of α-Amino Acids via Formation of Dithiocarbamates

    Get PDF
    72

    Titrimetric Determination of a-Amino Acids via Formation of Dithiocarbamates

    Get PDF
    721-72

    Battery Lifetime Extension Using Super capacitors in Small-Scale Wind-Energy System with fuzzy logic control

    Full text link
    Because of the variable attributes of renewable era, batteries utilized as a part of renewable-force frameworks can experience numerous unpredictable, incomplete charge/release cycles. This study shows a technique for enhancing battery lifetime in a little scale remote-zone wind-power framework by the utilization of a battery/super capacitor half breed vitality stockpiling framework. An agent element model of the general framework, consolidating practical wind-speed and load power varieties has been produced

    Neutral Larkin--Ovchinnikov--Fulde--Ferrell state and chromomagnetic instability in two-flavor dense QCD

    Full text link
    In two-flavor dense quark matter, we describe the dynamics in the single plane wave Larkin--Ovchinnikov--Fulde--Ferrell (LOFF) state satisfying the color and electric neutrality conditions. We find that because the neutral LOFF state itself suffers from a chromomagnetic instability in the whole region where it coexists with the (gapped/gapless) two-flavor superconducting (2SC/g2SC) phases, it cannot cure this instability in those phases. This is unlike the recently revealed gluonic phase which seems to be able to resolve this problem.Comment: Revtex4, 5 pages, 3 figures, clarifications added, to appear in Phys.Rev.Let

    Spin-lattice coupling mediated giant magnetodielectricity across the spin reorientation in Ca2FeCoO5

    Full text link
    The structural, phonon, magnetic, dielectric, and magneto dielectric responses of the pure bulk Brownmillerite compound Ca2FeCoO5 are reported. This compound showed giant magneto dielectric response (10%-24%) induced by strong spin-lattice coupling across its spin reorientation transition (150-250 K). The role of two Debye temperatures pertaining to differently coordinated sites in the dielectric relaxations is established. The positive giant magneto-dielectricity is shown to be a direct consequence of the modulations in the lattice degrees of freedom through applied external field across the spin reorientation transition. Our study illustrates novel control of magneto-dielectricity by tuning the spin reorientation transition in a material that possess strong spin lattice coupling.Comment: 7 pages, 12 figure

    Bulk viscosity in hyperonic star and r-mode instability

    Full text link
    We consider a rotating neutron star with the presence of hyperons in its core, using an equation of state in an effective chiral model within the relativistic mean field approximation. We calculate the hyperonic bulk viscosity coefficient due to nonleptonic weak interactions. By estimating the damping timescales of the dissipative processes, we investigate its role in the suppression of gravitationally driven instabilities in the rr-mode. We observe that rr-mode instability remains very much significant for hyperon core temperature of around 10810^8 K, resulting in a comparatively larger instability window. We find that such instability can reduce the angular velocity of the rapidly rotating star considerably upto 0.04ΩK\sim0.04 \Omega_K, with ΩK\Omega_K as the Keplerian angular velocity.Comment: 10 pages including 7 figure

    Superfluid Phase Stability of 3^3He in Axially Anisotropic Aerogel

    Full text link
    Measurements of superfluid 3^3He in 98% aerogel demonstrate the existence of a metastable \emph{A}-like phase and a stable \emph{B}-like phase. It has been suggested that the relative stability of these two phases is controlled by anisotropic quasiparticle scattering in the aerogel. Anisotropic scattering produced by axial compression of the aerogel has been predicted to stabilize the axial state of superfluid 3^3He. To explore this possiblity, we used transverse acoustic impedance to map out the phase diagram of superfluid 3^3He in a 98\sim 98% porous silica aerogel subjected to 17% axial compression. We have previously shown that axial anisotropy in aerogel leads to optical birefringence and that optical cross-polarization studies can be used to characterize such anisotropy. Consequently, we have performed optical cross-polarization experiments to verify the presence and uniformity of the axial anisotropy in our aerogel sample. We find that uniform axial anisotropy introduced by 17% compression does not stabilize the \emph{A}-like phase. We also find an increase in the supercooling of the \emph{A}-like phase at lower pressure, indicating a modification to \emph{B}-like phase nucleation in \emph{globally} anisotropic aerogels.Comment: 4 pages, 4 figures, submitted to LT25 (25th International Conference on Low Temperature Physics

    Experimental Evidence of Time Delay Induced Death in Coupled Limit Cycle Oscillators

    Get PDF
    Experimental observations of time delay induced amplitude death in a pair of coupled nonlinear electronic circuits that are individually capable of exhibiting limit cycle oscillations are described. In particular, the existence of multiply connected death islands in the parameter space of the coupling strength and the time delay parameter for coupled identical oscillators is established. The existence of such regions was predicted earlier on theoretical grounds in [Phys. Rev. Lett. 80, 5109 (1998); Physica 129D, 15 (1999)]. The experiments also reveal the occurrence of multiple frequency states, frequency suppression of oscillations with increased time delay and the onset of both in-phase and anti-phase collective oscillations.Comment: 4 aps formatted RevTeX pages; 6 figures; to appear in Phys. Rev. Let
    corecore