2,318 research outputs found

    Overview of pulsed electric field (pef) preservation on food products

    Get PDF
    The rise in consumer demand for nutritious food options combined with a desire for a more natural taste has prompted the creation of novel gentle food preservation processes as alternatives to traditional methods like heat treatment. New Methods like high hydrostatic pressure and pulsed electric fields (PEFs), have emerged as no thermal pasteurization methods. These methods aim to effectively reduce microbial content while maintaining the quality of the food product. Pulsed electric field processing is particularly suitable for decontaminating heat-sensitive foods. Furthermore, it presents no environmental risks and has shown no indications of toxicity [1]

    Spirulina: nutritional and therapeutic review

    Get PDF
    The current environmental conditions deteriorations, mental and physical stress, changes in the diet have been serious risk factors for the humans, increased the death rate and civilization diseases. These are the obvious reasons why new progressive trends are being extensively developed in modern medicine, pharmacology and biotechnology and more effective harmless medicaments are being sought for to treat and prevent various diseases. One of the trends in biotechnology is associated with Blue green microalgae Spirulina platensis which have been widely employed as food and feed additives in agriculture, food industry, pharmaceuticals, perfume making, medicine and science [1]

    Performance Testing and Analysis of Synchronous Reluctance Motor Utilizing Dual-phase Magnetic Material

    Get PDF
    While interior permanent magnet (1PM) machines have been considered the state-of-the art for traction motors, synchronous reluctance (SynRel) motors with advanced materials can provide a competitive alternative. 1PM machines typically utilize Neodymium 1ron Boron (NdFeB) permanent magnets, which pose an issue in terms of price, sustainability, demagnetization at higher operating temperatures, and uncontrolled generation. On the other hand, SynRel machines do not contain any magnets and are free from these issues. However, the absence of magnets as well the presence of bridges and centerposts limit the flux-weakening capability of a SynRel machine and limit the achievable constant power speed ratio (CPSR) without having to significantly oversize the machine and/or the power converter. 1n this paper, a new material referred to as the dual-phase magnetic material where nonmagnetic regions can be selectively introduced within each lamination will be evaluated for SynRel designs. The dual-phase feature of this material enables non-magnetic bridges and posts, eliminating one of the key limitations of the SynRel designs in terms of torque density and flux-weakening. This paper will present, the design, analysis and test results of an advanced proof-of-concept SynRel design utilizing dual-phase material with traction applications as the ultimate target application

    Finding Universal Inhibitor of Amyloid Aggregation

    Get PDF
    Protein misfolding and aggregation results in many human diseases and some diseases are caused when protein aggregation leads to amyloid formation(Chiti and Dobson, 2006). Amyloids are rigid, insoluble, unbranched, fibrous and well organized proteinaceous materials having cross-β core structure(Chiti and Dobson, 2006)(Nelson et al., 2005). They have characteristic “cross β-sheet” structure, revealed by X-ray diffraction studies. Detection of amyloid can be done by both congo red binding and thioflavin-T (Th-T) assay. Thermodynamic properties of complexes of Congo Red (CR) dye with amyloid β(Aβ) peptides were studied by absorption spectroscopy and thioflavin-T were studied by fluorescence spectroscopy. Inhibition of pathogenic protein aggregation may be an important and straight forward therapeutic strategy for curing amyloid diseases.inhibitory effect of 3-aminophenol, GPS-1, GPS-2 on bovine serum albumin, lysozyme, rnq1 prion protein amyloid aggregates were studied. 3aminophenol shows significant inhibitory action on lysozyme amyloid aggregates

    Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris

    Get PDF
    The climate-active gas methane is generated both by biological processes and by thermogenic decomposition of fossil organic material, which forms methane and short-chain alkanes, principally ethane, propane and butane1, 2. In addition to natural sources, environments are exposed to anthropogenic inputs of all these gases from oil and gas extraction and distribution. The gases provide carbon and/or energy for a diverse range of microorganisms that can metabolize them in both anoxic3 and oxic zones. Aerobic methanotrophs, which can assimilate methane, have been considered to be entirely distinct from utilizers of short-chain alkanes, and studies of environments exposed to mixtures of methane and multi-carbon alkanes have assumed that disparate groups of microorganisms are responsible for the metabolism of these gases. Here we describe the mechanism by which a single bacterial strain, Methylocella silvestris, can use methane or propane as a carbon and energy source, documenting a methanotroph that can utilize a short-chain alkane as an alternative to methane. Furthermore, during growth on a mixture of these gases, efficient consumption of both gases occurred at the same time. Two soluble di-iron centre monooxygenase (SDIMO) gene clusters were identified and were found to be differentially expressed during bacterial growth on these gases, although both were required for efficient propane utilization. This report of a methanotroph expressing an additional SDIMO that seems to be uniquely involved in short-chain alkane metabolism suggests that such metabolic flexibility may be important in many environments where methane and short-chain alkanes co-occur

    An international randomised placebo-controlled trial of a four-component combination pill ("polypill") in people with raised cardiovascular risk.

    Full text link
    BACKGROUND:There has been widespread interest in the potential of combination cardiovascular medications containing aspirin and agents to lower blood pressure and cholesterol ('polypills') to reduce cardiovascular disease. However, no reliable placebo-controlled data are available on both efficacy and tolerability. METHODS:We conducted a randomised, double-blind placebo-controlled trial of a polypill (containing aspirin 75 mg, lisinopril 10 mg, hydrochlorothiazide 12.5 mg and simvastatin 20 mg) in 378 individuals without an indication for any component of the polypill, but who had an estimated 5-year cardiovascular disease risk over 7.5%. The primary outcomes were systolic blood pressure (SBP), LDL-cholesterol and tolerability (proportion discontinued randomised therapy) at 12 weeks follow-up. FINDINGS:At baseline, mean BP was 134/81 mmHg and mean LDL-cholesterol was 3.7 mmol/L. Over 12 weeks, polypill treatment reduced SBP by 9.9 (95% CI: 7.7 to 12.1) mmHg and LDL-cholesterol by 0.8 (95% CI 0.6 to 0.9) mmol/L. The discontinuation rates in the polypill group compared to placebo were 23% vs 18% (RR 1.33, 95% CI 0.89 to 2.00, p = 0.2). There was an excess of side effects known to the component medicines (58% vs 42%, p = 0.001), which was mostly apparent within a few weeks, and usually did not warrant cessation of trial treatment. CONCLUSIONS:This polypill achieved sizeable reductions in SBP and LDL-cholesterol but caused side effects in about 1 in 6 people. The halving in predicted cardiovascular risk is moderately lower than previous estimates and the side effect rate is moderately higher. Nonetheless, substantial net benefits would be expected among patients at high risk. TRIAL REGISTRATION:Australian New Zealand Clinical Trials Registry ACTRN12607000099426

    Analysis of changing statistical significance from .05 to .005 in foot and ankle randomized controlled trials

    Get PDF
    Background: Misinterpretation of p-values in RCTs is extremely problematic since they are the core basis for high levels of recommendation in clinical practice guidelines, especially Orthopaedics. Benjamin et al. proposed a universal protocol change, moving statistical significance from a p-value of .05 to .005 to combat the misinterpretation that is happening in medical literature. In this study, we are looking to evaluate the effect of the protocol suggested by Benjamin et al. on foot and ankle-related RCTs in the top 3 Foot and Ankle-related journals.Methods: We conducted a Pubmed search looking at studies published from January 1st, 2016 to November 10, 2021, in the following three journals; Foot and Ankle International, Journal of Foot and Ankle Surgery, and Foot & Ankle International. The inclusion criteria for the study were RCTs published in the above journals with specifically stated primary endpoints. If a study has multiple primary endpoints, all were included. Exclusion criteria were any study that was not prospective and randomized by design, also any study that did not state primary endpoints was excluded. Two authors extracted the data using a pilot-tested Google form, any disagreements or questions were resolved by published methodologic orthopaedic authors.Results: Of the 222 endpoints, 101 endpoints (45.5%; 101/222) were at or below the .05 threshold while 121 endpoints (54.5%; 121/222) were above the .05 threshold. We also found that 59 endpoints (26.6%; 59/222) were below .005.Conclusion: Our results suggest that changing the threshold for statistical significance from .05 to .005 in foot and ankle RCTs would heavily alter literature published in the field. By implementing this methodology, it is a promising measure to be able to increase RCT quality until a more substantial solution can be found. With that being said, caution must be taken when interpreting our results, also requiring further evaluation

    Exploration of Molecular Factors Impairing Superoxide Dismutase Isoforms Activity in Human Senile Cataractous Lenses

    Get PDF
    PURPOSE. To explore different molecular factors impairing the activities of superoxide dismutase (SOD) isoforms in senile cataractous lenses. METHODS. Enzyme activity of SOD isoforms, levels of their corresponding cofactors copper (Cu), manganese (Mn), zinc (Zn), and expression of mRNA transcripts and proteins were determined in the lenses of human subjects with and without cataract. DNA from lens epithelium (LE) and peripheral blood was isolated. Polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) followed by sequencing was carried out to screen somatic mutations. The impact of intronic insertion/deletion (INDEL) variations on the splicing process and on the resultant transcript was evaluated. Genotyping of IVS4þ42delG polymorphism of SOD1 gene was done by PCR-restriction fragment length polymorphism (RFLP). RESULTS. A significant decrease in Cu/Zn-and Mn-SOD activity (P < 0.001) and in Cu/Zn-SOD transcript (P < 0.001) and its protein (P < 0.05) were found in cataractous lenses. No significant change in the level of copper (P ¼ 0.36) and an increase in the level of manganese (P ¼ 0.01) and zinc (P ¼ 0.02) were observed in cataractous lenses. A significant positive correlation between the level of Cu/Zn-SOD activity and the levels of Cu (P ¼ 0.003) and Zn (P ¼ 0.005) was found in the cataractous lenses. DNA sequencing revealed three intronic INDEL variations in exon4 of SOD1 gene. Splice-junction analysis showed the potential of IVS4þ42delG in creating a new cryptic acceptor site. If it is involved in alternate splicing, it could result in generation of SOD1 mRNA transcripts lacking exon4 region. Transcript analysis revealed the presence of complete SOD1 mRNA transcripts. Genotyping revealed the presence of IVS4þ42delG polymorphism in all subjects. CONCLUSIONS. The decrease in the activity of SOD1 isoform in cataractous lenses was associated with the decreased level of mRNA transcripts and their protein expression and was not associated with either modulation in the level of enzyme cofactors or with INDEL variations

    An overview of the first 5 years of the ENIGMA obsessive–compulsive disorder working group: The power of worldwide collaboration

    No full text
    Abstract Neuroimaging has played an important part in advancing our understanding of the neurobiology of obsessive?compulsive disorder (OCD). At the same time, neuroimaging studies of OCD have had notable limitations, including reliance on relatively small samples. International collaborative efforts to increase statistical power by combining samples from across sites have been bolstered by the ENIGMA consortium; this provides specific technical expertise for conducting multi-site analyses, as well as access to a collaborative community of neuroimaging scientists. In this article, we outline the background to, development of, and initial findings from ENIGMA's OCD working group, which currently consists of 47 samples from 34 institutes in 15 countries on 5 continents, with a total sample of 2,323 OCD patients and 2,325 healthy controls. Initial work has focused on studies of cortical thickness and subcortical volumes, structural connectivity, and brain lateralization in children, adolescents and adults with OCD, also including the study on the commonalities and distinctions across different neurodevelopment disorders. Additional work is ongoing, employing machine learning techniques. Findings to date have contributed to the development of neurobiological models of OCD, have provided an important model of global scientific collaboration, and have had a number of clinical implications. Importantly, our work has shed new light on questions about whether structural and functional alterations found in OCD reflect neurodevelopmental changes, effects of the disease process, or medication impacts. We conclude with a summary of ongoing work by ENIGMA-OCD, and a consideration of future directions for neuroimaging research on OCD within and beyond ENIGMA

    Vascular and Cardiac Impairments in Rats Inhaling Ozone and Diesel Exhaust Particles

    Get PDF
    BackgroundMechanisms of cardiovascular injuries from exposure to gas and particulate air pollutants are unknown.ObjectiveWe sought to determine whether episodic exposure of rats to ozone or diesel exhaust particles (DEP) causes differential cardiovascular impairments that are exacerbated by ozone plus DEP.Methods and resultsMale Wistar Kyoto rats (10–12 weeks of age) were exposed to air, ozone (0.4 ppm), DEP (2.1 mg/m3), or ozone (0.38 ppm) + DEP (2.2 mg/m3) for 5 hr/day, 1 day/week for 16 weeks, or to air, ozone (0.51 or 1.0 ppm), or DEP (1.9 mg/m3) for 5 hr/day for 2 days. At the end of each exposure period, we examined pulmonary and cardiovascular biomarkers of injury. In the 16-week study, we observed mild pulmonary pathology in the ozone, DEP, and ozone + DEP exposure groups, a slight decrease in circulating lymphocytes in the ozone and DEP groups, and decreased platelets in the DEP group. After 16 weeks of exposure, mRNA biomarkers of oxidative stress (hemeoxygenase-1), thrombosis (tissue factor, plasminogen activator inhibitor-1, tissue plasminogen activator, and von Willebrand factor), vasoconstriction (endothelin-1, endothelin receptors A and B, endothelial NO synthase) and proteolysis [matrix metalloprotease (MMP)-2, MMP-3, and tissue inhibitor of matrix metalloprotease-2] were increased by DEP and/or ozone in the aorta, but not in the heart. Aortic LOX-1 (lectin-like oxidized low-density lipoprotein receptor-1) mRNA and protein increased after ozone exposure, and LOX-1 protein increased after exposure to ozone + DEP. RAGE (receptor for advanced glycation end products) mRNA increased in the ozone + DEP group. Exposure to ozone or DEP depleted cardiac mitochondrial phospholipid fatty acids (DEP > ozone). The combined effect of ozone and DEP exposure was less pronounced than exposure to either pollutant alone. Exposure to ozone or DEP for 2 days (acute) caused mild changes in the aorta.ConclusionsIn animals exposed to ozone or DEP alone for 16 weeks, we observed elevated biomarkers of vascular impairments in the aorta, with the loss of phospholipid fatty acids in myocardial mitochondria. We conclude that there is a possible role of oxidized lipids and protein through LOX-1 and/or RAGE signaling
    corecore